ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprnegg Unicode version

Theorem opprnegg 13639
Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
opprneg.2  |-  N  =  ( invg `  R )
Assertion
Ref Expression
opprnegg  |-  ( R  e.  V  ->  N  =  ( invg `  O ) )

Proof of Theorem opprnegg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . 4  |-  O  =  (oppr
`  R )
2 eqid 2196 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
31, 2opprbasg 13631 . . 3  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
4 eqid 2196 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
51, 4oppraddg 13632 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  O
) )
65oveqd 5939 . . . . 5  |-  ( R  e.  V  ->  (
y ( +g  `  R
) x )  =  ( y ( +g  `  O ) x ) )
7 eqid 2196 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
81, 7oppr0g 13637 . . . . 5  |-  ( R  e.  V  ->  ( 0g `  R )  =  ( 0g `  O
) )
96, 8eqeq12d 2211 . . . 4  |-  ( R  e.  V  ->  (
( y ( +g  `  R ) x )  =  ( 0g `  R )  <->  ( y
( +g  `  O ) x )  =  ( 0g `  O ) ) )
103, 9riotaeqbidv 5880 . . 3  |-  ( R  e.  V  ->  ( iota_ y  e.  ( Base `  R ) ( y ( +g  `  R
) x )  =  ( 0g `  R
) )  =  (
iota_ y  e.  ( Base `  O ) ( y ( +g  `  O
) x )  =  ( 0g `  O
) ) )
113, 10mpteq12dv 4115 . 2  |-  ( R  e.  V  ->  (
x  e.  ( Base `  R )  |->  ( iota_ y  e.  ( Base `  R
) ( y ( +g  `  R ) x )  =  ( 0g `  R ) ) )  =  ( x  e.  ( Base `  O )  |->  ( iota_ y  e.  ( Base `  O
) ( y ( +g  `  O ) x )  =  ( 0g `  O ) ) ) )
12 opprneg.2 . . 3  |-  N  =  ( invg `  R )
132, 4, 7, 12grpinvfvalg 13174 . 2  |-  ( R  e.  V  ->  N  =  ( x  e.  ( Base `  R
)  |->  ( iota_ y  e.  ( Base `  R
) ( y ( +g  `  R ) x )  =  ( 0g `  R ) ) ) )
141opprex 13629 . . 3  |-  ( R  e.  V  ->  O  e.  _V )
15 eqid 2196 . . . 4  |-  ( Base `  O )  =  (
Base `  O )
16 eqid 2196 . . . 4  |-  ( +g  `  O )  =  ( +g  `  O )
17 eqid 2196 . . . 4  |-  ( 0g
`  O )  =  ( 0g `  O
)
18 eqid 2196 . . . 4  |-  ( invg `  O )  =  ( invg `  O )
1915, 16, 17, 18grpinvfvalg 13174 . . 3  |-  ( O  e.  _V  ->  ( invg `  O )  =  ( x  e.  ( Base `  O
)  |->  ( iota_ y  e.  ( Base `  O
) ( y ( +g  `  O ) x )  =  ( 0g `  O ) ) ) )
2014, 19syl 14 . 2  |-  ( R  e.  V  ->  ( invg `  O )  =  ( x  e.  ( Base `  O
)  |->  ( iota_ y  e.  ( Base `  O
) ( y ( +g  `  O ) x )  =  ( 0g `  O ) ) ) )
2111, 13, 203eqtr4d 2239 1  |-  ( R  e.  V  ->  N  =  ( invg `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    |-> cmpt 4094   ` cfv 5258   iota_crio 5876  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   invgcminusg 13133  opprcoppr 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-minusg 13136  df-oppr 13624
This theorem is referenced by:  unitnegcl  13686
  Copyright terms: Public domain W3C validator