| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemab | Unicode version | ||
| Description: Lemma for acexmid 5943. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlemab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3464 |
. . . 4
| |
| 2 | 0ex 4171 |
. . . . . 6
| |
| 3 | 2 | snid 3664 |
. . . . 5
|
| 4 | eleq2 2269 |
. . . . 5
| |
| 5 | 3, 4 | mpbiri 168 |
. . . 4
|
| 6 | 1, 5 | mto 664 |
. . 3
|
| 7 | acexmidlem.a |
. . . . . . . . . 10
| |
| 8 | acexmidlem.b |
. . . . . . . . . 10
| |
| 9 | acexmidlem.c |
. . . . . . . . . 10
| |
| 10 | 7, 8, 9 | acexmidlemph 5937 |
. . . . . . . . 9
|
| 11 | id 19 |
. . . . . . . . . 10
| |
| 12 | eleq1 2268 |
. . . . . . . . . . . 12
| |
| 13 | 12 | anbi1d 465 |
. . . . . . . . . . 11
|
| 14 | 13 | rexbidv 2507 |
. . . . . . . . . 10
|
| 15 | 11, 14 | riotaeqbidv 5902 |
. . . . . . . . 9
|
| 16 | 10, 15 | syl 14 |
. . . . . . . 8
|
| 17 | 16 | eqeq1d 2214 |
. . . . . . 7
|
| 18 | 17 | biimpa 296 |
. . . . . 6
|
| 19 | 18 | adantrr 479 |
. . . . 5
|
| 20 | simprr 531 |
. . . . 5
| |
| 21 | 19, 20 | eqtr3d 2240 |
. . . 4
|
| 22 | 21 | ex 115 |
. . 3
|
| 23 | 6, 22 | mtoi 666 |
. 2
|
| 24 | 23 | con2i 628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-nul 4170 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-nul 3461 df-sn 3639 df-uni 3851 df-iota 5232 df-riota 5899 |
| This theorem is referenced by: acexmidlem1 5940 |
| Copyright terms: Public domain | W3C validator |