ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemab Unicode version

Theorem acexmidlemab 5776
Description: Lemma for acexmid 5781. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlemab  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  -.  ph )
Distinct variable groups:    x, y, v, u, A    x, B, y, v, u    x, C, y, v, u    ph, x, y, v, u

Proof of Theorem acexmidlemab
StepHypRef Expression
1 noel 3372 . . . 4  |-  -.  (/)  e.  (/)
2 0ex 4063 . . . . . 6  |-  (/)  e.  _V
32snid 3563 . . . . 5  |-  (/)  e.  { (/)
}
4 eleq2 2204 . . . . 5  |-  ( (/)  =  { (/) }  ->  ( (/) 
e.  (/)  <->  (/)  e.  { (/) } ) )
53, 4mpbiri 167 . . . 4  |-  ( (/)  =  { (/) }  ->  (/)  e.  (/) )
61, 5mto 652 . . 3  |-  -.  (/)  =  { (/)
}
7 acexmidlem.a . . . . . . . . . 10  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
8 acexmidlem.b . . . . . . . . . 10  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
9 acexmidlem.c . . . . . . . . . 10  |-  C  =  { A ,  B }
107, 8, 9acexmidlemph 5775 . . . . . . . . 9  |-  ( ph  ->  A  =  B )
11 id 19 . . . . . . . . . 10  |-  ( A  =  B  ->  A  =  B )
12 eleq1 2203 . . . . . . . . . . . 12  |-  ( A  =  B  ->  ( A  e.  u  <->  B  e.  u ) )
1312anbi1d 461 . . . . . . . . . . 11  |-  ( A  =  B  ->  (
( A  e.  u  /\  v  e.  u
)  <->  ( B  e.  u  /\  v  e.  u ) ) )
1413rexbidv 2439 . . . . . . . . . 10  |-  ( A  =  B  ->  ( E. u  e.  y 
( A  e.  u  /\  v  e.  u
)  <->  E. u  e.  y  ( B  e.  u  /\  v  e.  u
) ) )
1511, 14riotaeqbidv 5741 . . . . . . . . 9  |-  ( A  =  B  ->  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  =  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) ) )
1610, 15syl 14 . . . . . . . 8  |-  ( ph  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) ) )
1716eqeq1d 2149 . . . . . . 7  |-  ( ph  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/) 
<->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  (/) ) )
1817biimpa 294 . . . . . 6  |-  ( (
ph  /\  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/) )  ->  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/) )
1918adantrr 471 . . . . 5  |-  ( (
ph  /\  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  ->  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  (/) )
20 simprr 522 . . . . 5  |-  ( (
ph  /\  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  ->  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } )
2119, 20eqtr3d 2175 . . . 4  |-  ( (
ph  /\  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  ->  (/)  =  { (/)
} )
2221ex 114 . . 3  |-  ( ph  ->  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } )  ->  (/)  =  { (/) } ) )
236, 22mtoi 654 . 2  |-  ( ph  ->  -.  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
2423con2i 617 1  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1332    e. wcel 1481   E.wrex 2418   {crab 2421   (/)c0 3368   {csn 3532   {cpr 3533   iota_crio 5737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-nul 4062
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-nul 3369  df-sn 3538  df-uni 3745  df-iota 5096  df-riota 5738
This theorem is referenced by:  acexmidlem1  5778
  Copyright terms: Public domain W3C validator