ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemab Unicode version

Theorem acexmidlemab 5845
Description: Lemma for acexmid 5850. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlemab  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  -.  ph )
Distinct variable groups:    x, y, v, u, A    x, B, y, v, u    x, C, y, v, u    ph, x, y, v, u

Proof of Theorem acexmidlemab
StepHypRef Expression
1 noel 3418 . . . 4  |-  -.  (/)  e.  (/)
2 0ex 4114 . . . . . 6  |-  (/)  e.  _V
32snid 3612 . . . . 5  |-  (/)  e.  { (/)
}
4 eleq2 2234 . . . . 5  |-  ( (/)  =  { (/) }  ->  ( (/) 
e.  (/)  <->  (/)  e.  { (/) } ) )
53, 4mpbiri 167 . . . 4  |-  ( (/)  =  { (/) }  ->  (/)  e.  (/) )
61, 5mto 657 . . 3  |-  -.  (/)  =  { (/)
}
7 acexmidlem.a . . . . . . . . . 10  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
8 acexmidlem.b . . . . . . . . . 10  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
9 acexmidlem.c . . . . . . . . . 10  |-  C  =  { A ,  B }
107, 8, 9acexmidlemph 5844 . . . . . . . . 9  |-  ( ph  ->  A  =  B )
11 id 19 . . . . . . . . . 10  |-  ( A  =  B  ->  A  =  B )
12 eleq1 2233 . . . . . . . . . . . 12  |-  ( A  =  B  ->  ( A  e.  u  <->  B  e.  u ) )
1312anbi1d 462 . . . . . . . . . . 11  |-  ( A  =  B  ->  (
( A  e.  u  /\  v  e.  u
)  <->  ( B  e.  u  /\  v  e.  u ) ) )
1413rexbidv 2471 . . . . . . . . . 10  |-  ( A  =  B  ->  ( E. u  e.  y 
( A  e.  u  /\  v  e.  u
)  <->  E. u  e.  y  ( B  e.  u  /\  v  e.  u
) ) )
1511, 14riotaeqbidv 5810 . . . . . . . . 9  |-  ( A  =  B  ->  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  =  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) ) )
1610, 15syl 14 . . . . . . . 8  |-  ( ph  ->  ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (
iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) ) )
1716eqeq1d 2179 . . . . . . 7  |-  ( ph  ->  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/) 
<->  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  (/) ) )
1817biimpa 294 . . . . . 6  |-  ( (
ph  /\  ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/) )  ->  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  (/) )
1918adantrr 476 . . . . 5  |-  ( (
ph  /\  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  ->  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  (/) )
20 simprr 527 . . . . 5  |-  ( (
ph  /\  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  ->  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } )
2119, 20eqtr3d 2205 . . . 4  |-  ( (
ph  /\  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u )
)  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
)  =  { (/) } ) )  ->  (/)  =  { (/)
} )
2221ex 114 . . 3  |-  ( ph  ->  ( ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } )  ->  (/)  =  { (/) } ) )
236, 22mtoi 659 . 2  |-  ( ph  ->  -.  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )
2423con2i 622 1  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141   E.wrex 2449   {crab 2452   (/)c0 3414   {csn 3581   {cpr 3582   iota_crio 5806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4113
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-nul 3415  df-sn 3587  df-uni 3795  df-iota 5158  df-riota 5807
This theorem is referenced by:  acexmidlem1  5847
  Copyright terms: Public domain W3C validator