| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemab | Unicode version | ||
| Description: Lemma for acexmid 5921. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlemab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3454 |
. . . 4
| |
| 2 | 0ex 4160 |
. . . . . 6
| |
| 3 | 2 | snid 3653 |
. . . . 5
|
| 4 | eleq2 2260 |
. . . . 5
| |
| 5 | 3, 4 | mpbiri 168 |
. . . 4
|
| 6 | 1, 5 | mto 663 |
. . 3
|
| 7 | acexmidlem.a |
. . . . . . . . . 10
| |
| 8 | acexmidlem.b |
. . . . . . . . . 10
| |
| 9 | acexmidlem.c |
. . . . . . . . . 10
| |
| 10 | 7, 8, 9 | acexmidlemph 5915 |
. . . . . . . . 9
|
| 11 | id 19 |
. . . . . . . . . 10
| |
| 12 | eleq1 2259 |
. . . . . . . . . . . 12
| |
| 13 | 12 | anbi1d 465 |
. . . . . . . . . . 11
|
| 14 | 13 | rexbidv 2498 |
. . . . . . . . . 10
|
| 15 | 11, 14 | riotaeqbidv 5880 |
. . . . . . . . 9
|
| 16 | 10, 15 | syl 14 |
. . . . . . . 8
|
| 17 | 16 | eqeq1d 2205 |
. . . . . . 7
|
| 18 | 17 | biimpa 296 |
. . . . . 6
|
| 19 | 18 | adantrr 479 |
. . . . 5
|
| 20 | simprr 531 |
. . . . 5
| |
| 21 | 19, 20 | eqtr3d 2231 |
. . . 4
|
| 22 | 21 | ex 115 |
. . 3
|
| 23 | 6, 22 | mtoi 665 |
. 2
|
| 24 | 23 | con2i 628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-nul 3451 df-sn 3628 df-uni 3840 df-iota 5219 df-riota 5877 |
| This theorem is referenced by: acexmidlem1 5918 |
| Copyright terms: Public domain | W3C validator |