ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rinvmod Unicode version

Theorem rinvmod 13587
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6139. (Contributed by AV, 31-Dec-2023.)
Hypotheses
Ref Expression
rinvmod.b  |-  B  =  ( Base `  G
)
rinvmod.0  |-  .0.  =  ( 0g `  G )
rinvmod.p  |-  .+  =  ( +g  `  G )
rinvmod.m  |-  ( ph  ->  G  e. CMnd )
rinvmod.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
rinvmod  |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
Distinct variable groups:    w, A    w, B    w,  .0.    w,  .+    ph, w
Allowed substitution hint:    G( w)

Proof of Theorem rinvmod
StepHypRef Expression
1 rinvmod.m . . . . . . . . 9  |-  ( ph  ->  G  e. CMnd )
21adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  G  e. CMnd )
3 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  w  e.  B )
4 rinvmod.a . . . . . . . . 9  |-  ( ph  ->  A  e.  B )
54adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  A  e.  B )
6 rinvmod.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
7 rinvmod.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
86, 7cmncom 13580 . . . . . . . 8  |-  ( ( G  e. CMnd  /\  w  e.  B  /\  A  e.  B )  ->  (
w  .+  A )  =  ( A  .+  w ) )
92, 3, 5, 8syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  w  e.  B )  ->  (
w  .+  A )  =  ( A  .+  w ) )
109adantr 276 . . . . . 6  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
w  .+  A )  =  ( A  .+  w ) )
11 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  ( A  .+  w )  =  .0.  )
1210, 11eqtrd 2237 . . . . 5  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
w  .+  A )  =  .0.  )
1312, 11jca 306 . . . 4  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) )
1413ex 115 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
( A  .+  w
)  =  .0.  ->  ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) ) )
1514ralrimiva 2578 . 2  |-  ( ph  ->  A. w  e.  B  ( ( A  .+  w )  =  .0. 
->  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) ) )
16 rinvmod.0 . . 3  |-  .0.  =  ( 0g `  G )
17 cmnmnd 13579 . . . 4  |-  ( G  e. CMnd  ->  G  e.  Mnd )
181, 17syl 14 . . 3  |-  ( ph  ->  G  e.  Mnd )
196, 16, 7, 18, 4mndinvmod 13219 . 2  |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) )
20 rmoim 2973 . 2  |-  ( A. w  e.  B  (
( A  .+  w
)  =  .0.  ->  ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) )  ->  ( E* w  e.  B  ( (
w  .+  A )  =  .0.  /\  ( A 
.+  w )  =  .0.  )  ->  E* w  e.  B  ( A  .+  w )  =  .0.  ) )
2115, 19, 20sylc 62 1  |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   A.wral 2483   E*wrmo 2486   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   0gc0g 13030   Mndcmnd 13190  CMndccmn 13562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-cmn 13564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator