ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rinvmod Unicode version

Theorem rinvmod 13379
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6112. (Contributed by AV, 31-Dec-2023.)
Hypotheses
Ref Expression
rinvmod.b  |-  B  =  ( Base `  G
)
rinvmod.0  |-  .0.  =  ( 0g `  G )
rinvmod.p  |-  .+  =  ( +g  `  G )
rinvmod.m  |-  ( ph  ->  G  e. CMnd )
rinvmod.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
rinvmod  |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
Distinct variable groups:    w, A    w, B    w,  .0.    w,  .+    ph, w
Allowed substitution hint:    G( w)

Proof of Theorem rinvmod
StepHypRef Expression
1 rinvmod.m . . . . . . . . 9  |-  ( ph  ->  G  e. CMnd )
21adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  G  e. CMnd )
3 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  w  e.  B )
4 rinvmod.a . . . . . . . . 9  |-  ( ph  ->  A  e.  B )
54adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  A  e.  B )
6 rinvmod.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
7 rinvmod.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
86, 7cmncom 13372 . . . . . . . 8  |-  ( ( G  e. CMnd  /\  w  e.  B  /\  A  e.  B )  ->  (
w  .+  A )  =  ( A  .+  w ) )
92, 3, 5, 8syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  w  e.  B )  ->  (
w  .+  A )  =  ( A  .+  w ) )
109adantr 276 . . . . . 6  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
w  .+  A )  =  ( A  .+  w ) )
11 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  ( A  .+  w )  =  .0.  )
1210, 11eqtrd 2226 . . . . 5  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
w  .+  A )  =  .0.  )
1312, 11jca 306 . . . 4  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) )
1413ex 115 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
( A  .+  w
)  =  .0.  ->  ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) ) )
1514ralrimiva 2567 . 2  |-  ( ph  ->  A. w  e.  B  ( ( A  .+  w )  =  .0. 
->  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) ) )
16 rinvmod.0 . . 3  |-  .0.  =  ( 0g `  G )
17 cmnmnd 13371 . . . 4  |-  ( G  e. CMnd  ->  G  e.  Mnd )
181, 17syl 14 . . 3  |-  ( ph  ->  G  e.  Mnd )
196, 16, 7, 18, 4mndinvmod 13026 . 2  |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) )
20 rmoim 2961 . 2  |-  ( A. w  e.  B  (
( A  .+  w
)  =  .0.  ->  ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) )  ->  ( E* w  e.  B  ( (
w  .+  A )  =  .0.  /\  ( A 
.+  w )  =  .0.  )  ->  E* w  e.  B  ( A  .+  w )  =  .0.  ) )
2115, 19, 20sylc 62 1  |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   E*wrmo 2475   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Mndcmnd 12997  CMndccmn 13354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-cmn 13356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator