ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rinvmod Unicode version

Theorem rinvmod 13841
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6198. (Contributed by AV, 31-Dec-2023.)
Hypotheses
Ref Expression
rinvmod.b  |-  B  =  ( Base `  G
)
rinvmod.0  |-  .0.  =  ( 0g `  G )
rinvmod.p  |-  .+  =  ( +g  `  G )
rinvmod.m  |-  ( ph  ->  G  e. CMnd )
rinvmod.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
rinvmod  |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
Distinct variable groups:    w, A    w, B    w,  .0.    w,  .+    ph, w
Allowed substitution hint:    G( w)

Proof of Theorem rinvmod
StepHypRef Expression
1 rinvmod.m . . . . . . . . 9  |-  ( ph  ->  G  e. CMnd )
21adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  G  e. CMnd )
3 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  w  e.  B )
4 rinvmod.a . . . . . . . . 9  |-  ( ph  ->  A  e.  B )
54adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  A  e.  B )
6 rinvmod.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
7 rinvmod.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
86, 7cmncom 13834 . . . . . . . 8  |-  ( ( G  e. CMnd  /\  w  e.  B  /\  A  e.  B )  ->  (
w  .+  A )  =  ( A  .+  w ) )
92, 3, 5, 8syl3anc 1271 . . . . . . 7  |-  ( (
ph  /\  w  e.  B )  ->  (
w  .+  A )  =  ( A  .+  w ) )
109adantr 276 . . . . . 6  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
w  .+  A )  =  ( A  .+  w ) )
11 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  ( A  .+  w )  =  .0.  )
1210, 11eqtrd 2262 . . . . 5  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
w  .+  A )  =  .0.  )
1312, 11jca 306 . . . 4  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) )
1413ex 115 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
( A  .+  w
)  =  .0.  ->  ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) ) )
1514ralrimiva 2603 . 2  |-  ( ph  ->  A. w  e.  B  ( ( A  .+  w )  =  .0. 
->  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) ) )
16 rinvmod.0 . . 3  |-  .0.  =  ( 0g `  G )
17 cmnmnd 13833 . . . 4  |-  ( G  e. CMnd  ->  G  e.  Mnd )
181, 17syl 14 . . 3  |-  ( ph  ->  G  e.  Mnd )
196, 16, 7, 18, 4mndinvmod 13473 . 2  |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) )
20 rmoim 3004 . 2  |-  ( A. w  e.  B  (
( A  .+  w
)  =  .0.  ->  ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) )  ->  ( E* w  e.  B  ( (
w  .+  A )  =  .0.  /\  ( A 
.+  w )  =  .0.  )  ->  E* w  e.  B  ( A  .+  w )  =  .0.  ) )
2115, 19, 20sylc 62 1  |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   E*wrmo 2511   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284   Mndcmnd 13444  CMndccmn 13816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-cmn 13818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator