ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rinvmod Unicode version

Theorem rinvmod 13720
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6153. (Contributed by AV, 31-Dec-2023.)
Hypotheses
Ref Expression
rinvmod.b  |-  B  =  ( Base `  G
)
rinvmod.0  |-  .0.  =  ( 0g `  G )
rinvmod.p  |-  .+  =  ( +g  `  G )
rinvmod.m  |-  ( ph  ->  G  e. CMnd )
rinvmod.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
rinvmod  |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
Distinct variable groups:    w, A    w, B    w,  .0.    w,  .+    ph, w
Allowed substitution hint:    G( w)

Proof of Theorem rinvmod
StepHypRef Expression
1 rinvmod.m . . . . . . . . 9  |-  ( ph  ->  G  e. CMnd )
21adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  G  e. CMnd )
3 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  w  e.  B )
4 rinvmod.a . . . . . . . . 9  |-  ( ph  ->  A  e.  B )
54adantr 276 . . . . . . . 8  |-  ( (
ph  /\  w  e.  B )  ->  A  e.  B )
6 rinvmod.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
7 rinvmod.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
86, 7cmncom 13713 . . . . . . . 8  |-  ( ( G  e. CMnd  /\  w  e.  B  /\  A  e.  B )  ->  (
w  .+  A )  =  ( A  .+  w ) )
92, 3, 5, 8syl3anc 1250 . . . . . . 7  |-  ( (
ph  /\  w  e.  B )  ->  (
w  .+  A )  =  ( A  .+  w ) )
109adantr 276 . . . . . 6  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
w  .+  A )  =  ( A  .+  w ) )
11 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  ( A  .+  w )  =  .0.  )
1210, 11eqtrd 2239 . . . . 5  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
w  .+  A )  =  .0.  )
1312, 11jca 306 . . . 4  |-  ( ( ( ph  /\  w  e.  B )  /\  ( A  .+  w )  =  .0.  )  ->  (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) )
1413ex 115 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
( A  .+  w
)  =  .0.  ->  ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) ) )
1514ralrimiva 2580 . 2  |-  ( ph  ->  A. w  e.  B  ( ( A  .+  w )  =  .0. 
->  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) ) )
16 rinvmod.0 . . 3  |-  .0.  =  ( 0g `  G )
17 cmnmnd 13712 . . . 4  |-  ( G  e. CMnd  ->  G  e.  Mnd )
181, 17syl 14 . . 3  |-  ( ph  ->  G  e.  Mnd )
196, 16, 7, 18, 4mndinvmod 13352 . 2  |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) )
20 rmoim 2978 . 2  |-  ( A. w  e.  B  (
( A  .+  w
)  =  .0.  ->  ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  ) )  ->  ( E* w  e.  B  ( (
w  .+  A )  =  .0.  /\  ( A 
.+  w )  =  .0.  )  ->  E* w  e.  B  ( A  .+  w )  =  .0.  ) )
2115, 19, 20sylc 62 1  |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   E*wrmo 2488   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   0gc0g 13163   Mndcmnd 13323  CMndccmn 13695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-cmn 13697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator