ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcimedv GIF version

Theorem rspcimedv 2879
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1 (𝜑𝐴𝐵)
rspcimedv.2 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
Assertion
Ref Expression
rspcimedv (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcimedv
StepHypRef Expression
1 rspcimdv.1 . . 3 (𝜑𝐴𝐵)
2 simpr 110 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
32eleq1d 2274 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝑥𝐵𝐴𝐵))
43biimprd 158 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝐴𝐵𝑥𝐵))
5 rspcimedv.2 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
64, 5anim12d 335 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝐴𝐵𝜒) → (𝑥𝐵𝜓)))
71, 6spcimedv 2859 . . 3 (𝜑 → ((𝐴𝐵𝜒) → ∃𝑥(𝑥𝐵𝜓)))
81, 7mpand 429 . 2 (𝜑 → (𝜒 → ∃𝑥(𝑥𝐵𝜓)))
9 df-rex 2490 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
108, 9imbitrrdi 162 1 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1515  wcel 2176  wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774
This theorem is referenced by:  rspcedv  2881
  Copyright terms: Public domain W3C validator