| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcimedv | GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcimedv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| rspcimedv | ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcimdv.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | simpr 110 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
| 3 | 2 | eleq1d 2298 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 4 | 3 | biimprd 158 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
| 5 | rspcimedv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
| 6 | 4, 5 | anim12d 335 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐴 ∈ 𝐵 ∧ 𝜒) → (𝑥 ∈ 𝐵 ∧ 𝜓))) |
| 7 | 1, 6 | spcimedv 2889 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝐵 ∧ 𝜒) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓))) |
| 8 | 1, 7 | mpand 429 | . 2 ⊢ (𝜑 → (𝜒 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓))) |
| 9 | df-rex 2514 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 10 | 8, 9 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 |
| This theorem is referenced by: rspcedv 2911 |
| Copyright terms: Public domain | W3C validator |