ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s8eqd Unicode version

Theorem s8eqd 11269
Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1  |-  ( ph  ->  A  =  N )
s2eqd.2  |-  ( ph  ->  B  =  O )
s3eqd.3  |-  ( ph  ->  C  =  P )
s4eqd.4  |-  ( ph  ->  D  =  Q )
s5eqd.5  |-  ( ph  ->  E  =  R )
s6eqd.6  |-  ( ph  ->  F  =  S )
s7eqd.6  |-  ( ph  ->  G  =  T )
s8eqd.6  |-  ( ph  ->  H  =  U )
Assertion
Ref Expression
s8eqd  |-  ( ph  ->  <" A B C D E F G H ">  =  <" N O P Q R S T U "> )

Proof of Theorem s8eqd
StepHypRef Expression
1 s2eqd.1 . . . 4  |-  ( ph  ->  A  =  N )
2 s2eqd.2 . . . 4  |-  ( ph  ->  B  =  O )
3 s3eqd.3 . . . 4  |-  ( ph  ->  C  =  P )
4 s4eqd.4 . . . 4  |-  ( ph  ->  D  =  Q )
5 s5eqd.5 . . . 4  |-  ( ph  ->  E  =  R )
6 s6eqd.6 . . . 4  |-  ( ph  ->  F  =  S )
7 s7eqd.6 . . . 4  |-  ( ph  ->  G  =  T )
81, 2, 3, 4, 5, 6, 7s7eqd 11268 . . 3  |-  ( ph  ->  <" A B C D E F G ">  =  <" N O P Q R S T "> )
9 s8eqd.6 . . . 4  |-  ( ph  ->  H  =  U )
109s1eqd 11114 . . 3  |-  ( ph  ->  <" H ">  =  <" U "> )
118, 10oveq12d 5987 . 2  |-  ( ph  ->  ( <" A B C D E F G "> ++  <" H "> )  =  (
<" N O P Q R S T "> ++  <" U "> ) )
12 df-s8 11255 . 2  |-  <" A B C D E F G H ">  =  ( <" A B C D E F G "> ++  <" H "> )
13 df-s8 11255 . 2  |-  <" N O P Q R S T U ">  =  ( <" N O P Q R S T "> ++  <" U "> )
1411, 12, 133eqtr4g 2265 1  |-  ( ph  ->  <" A B C D E F G H ">  =  <" N O P Q R S T U "> )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373  (class class class)co 5969   ++ cconcat 11086   <"cs1 11109   <"cs7 11247   <"cs8 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2779  df-un 3179  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-br 4061  df-iota 5252  df-fv 5299  df-ov 5972  df-s1 11110  df-s2 11249  df-s3 11250  df-s4 11251  df-s5 11252  df-s6 11253  df-s7 11254  df-s8 11255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator