Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sban | Unicode version |
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
Ref | Expression |
---|---|
sban |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbanv 1882 | . . . 4 | |
2 | 1 | sbbii 1758 | . . 3 |
3 | sbanv 1882 | . . 3 | |
4 | 2, 3 | bitri 183 | . 2 |
5 | ax-17 1519 | . . 3 | |
6 | 5 | sbco2vh 1938 | . 2 |
7 | ax-17 1519 | . . . 4 | |
8 | 7 | sbco2vh 1938 | . . 3 |
9 | ax-17 1519 | . . . 4 | |
10 | 9 | sbco2vh 1938 | . . 3 |
11 | 8, 10 | anbi12i 457 | . 2 |
12 | 4, 6, 11 | 3bitr3i 209 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sb3an 1951 sbbi 1952 sbmo 2078 moanim 2093 sbabel 2339 nfrexdya 2506 cbvreu 2694 rmo3f 2927 sbcan 2997 sbcang 2998 rmo3 3046 inab 3395 difab 3396 exss 4212 inopab 4743 bdcriota 13918 |
Copyright terms: Public domain | W3C validator |