ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sban Unicode version

Theorem sban 1889
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sban  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )

Proof of Theorem sban
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbanv 1828 . . . 4  |-  ( [ z  /  x ]
( ph  /\  ps )  <->  ( [ z  /  x ] ph  /\  [ z  /  x ] ps ) )
21sbbii 1706 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ( ph  /\  ps )  <->  [ y  /  z ] ( [ z  /  x ] ph  /\ 
[ z  /  x ] ps ) )
3 sbanv 1828 . . 3  |-  ( [ y  /  z ] ( [ z  /  x ] ph  /\  [
z  /  x ] ps )  <->  ( [ y  /  z ] [
z  /  x ] ph  /\  [ y  / 
z ] [ z  /  x ] ps ) )
42, 3bitri 183 . 2  |-  ( [ y  /  z ] [ z  /  x ] ( ph  /\  ps )  <->  ( [ y  /  z ] [
z  /  x ] ph  /\  [ y  / 
z ] [ z  /  x ] ps ) )
5 ax-17 1474 . . 3  |-  ( (
ph  /\  ps )  ->  A. z ( ph  /\ 
ps ) )
65sbco2v 1881 . 2  |-  ( [ y  /  z ] [ z  /  x ] ( ph  /\  ps )  <->  [ y  /  x ] ( ph  /\  ps ) )
7 ax-17 1474 . . . 4  |-  ( ph  ->  A. z ph )
87sbco2v 1881 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
9 ax-17 1474 . . . 4  |-  ( ps 
->  A. z ps )
109sbco2v 1881 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ps  <->  [ y  /  x ] ps )
118, 10anbi12i 451 . 2  |-  ( ( [ y  /  z ] [ z  /  x ] ph  /\  [ y  /  z ] [
z  /  x ] ps )  <->  ( [ y  /  x ] ph  /\ 
[ y  /  x ] ps ) )
124, 6, 113bitr3i 209 1  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   [wsb 1703
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-sb 1704
This theorem is referenced by:  sb3an  1892  sbbi  1893  sbmo  2019  moanim  2034  sbabel  2266  nfrexdya  2429  cbvreu  2610  rmo3f  2834  sbcan  2903  sbcang  2904  rmo3  2952  inab  3291  difab  3292  exss  4087  inopab  4609  bdcriota  12662
  Copyright terms: Public domain W3C validator