Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sban | Unicode version |
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
Ref | Expression |
---|---|
sban |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbanv 1877 | . . . 4 | |
2 | 1 | sbbii 1753 | . . 3 |
3 | sbanv 1877 | . . 3 | |
4 | 2, 3 | bitri 183 | . 2 |
5 | ax-17 1514 | . . 3 | |
6 | 5 | sbco2vh 1933 | . 2 |
7 | ax-17 1514 | . . . 4 | |
8 | 7 | sbco2vh 1933 | . . 3 |
9 | ax-17 1514 | . . . 4 | |
10 | 9 | sbco2vh 1933 | . . 3 |
11 | 8, 10 | anbi12i 456 | . 2 |
12 | 4, 6, 11 | 3bitr3i 209 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: sb3an 1946 sbbi 1947 sbmo 2073 moanim 2088 sbabel 2335 nfrexdya 2502 cbvreu 2690 rmo3f 2923 sbcan 2993 sbcang 2994 rmo3 3042 inab 3390 difab 3391 exss 4205 inopab 4736 bdcriota 13765 |
Copyright terms: Public domain | W3C validator |