ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sban Unicode version

Theorem sban 1943
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sban  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )

Proof of Theorem sban
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbanv 1877 . . . 4  |-  ( [ z  /  x ]
( ph  /\  ps )  <->  ( [ z  /  x ] ph  /\  [ z  /  x ] ps ) )
21sbbii 1753 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ( ph  /\  ps )  <->  [ y  /  z ] ( [ z  /  x ] ph  /\ 
[ z  /  x ] ps ) )
3 sbanv 1877 . . 3  |-  ( [ y  /  z ] ( [ z  /  x ] ph  /\  [
z  /  x ] ps )  <->  ( [ y  /  z ] [
z  /  x ] ph  /\  [ y  / 
z ] [ z  /  x ] ps ) )
42, 3bitri 183 . 2  |-  ( [ y  /  z ] [ z  /  x ] ( ph  /\  ps )  <->  ( [ y  /  z ] [
z  /  x ] ph  /\  [ y  / 
z ] [ z  /  x ] ps ) )
5 ax-17 1514 . . 3  |-  ( (
ph  /\  ps )  ->  A. z ( ph  /\ 
ps ) )
65sbco2vh 1933 . 2  |-  ( [ y  /  z ] [ z  /  x ] ( ph  /\  ps )  <->  [ y  /  x ] ( ph  /\  ps ) )
7 ax-17 1514 . . . 4  |-  ( ph  ->  A. z ph )
87sbco2vh 1933 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
9 ax-17 1514 . . . 4  |-  ( ps 
->  A. z ps )
109sbco2vh 1933 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ps  <->  [ y  /  x ] ps )
118, 10anbi12i 456 . 2  |-  ( ( [ y  /  z ] [ z  /  x ] ph  /\  [ y  /  z ] [
z  /  x ] ps )  <->  ( [ y  /  x ] ph  /\ 
[ y  /  x ] ps ) )
124, 6, 113bitr3i 209 1  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sb3an  1946  sbbi  1947  sbmo  2073  moanim  2088  sbabel  2335  nfrexdya  2502  cbvreu  2690  rmo3f  2923  sbcan  2993  sbcang  2994  rmo3  3042  inab  3390  difab  3391  exss  4205  inopab  4736  bdcriota  13765
  Copyright terms: Public domain W3C validator