ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcan Unicode version

Theorem sbcan 2975
Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.)
Assertion
Ref Expression
sbcan  |-  ( [. A  /  x ]. ( ph  /\  ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) )

Proof of Theorem sbcan
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbcex 2941 . 2  |-  ( [. A  /  x ]. ( ph  /\  ps )  ->  A  e.  _V )
2 sbcex 2941 . . 3  |-  ( [. A  /  x ]. ps  ->  A  e.  _V )
32adantl 275 . 2  |-  ( (
[. A  /  x ]. ph  /\  [. A  /  x ]. ps )  ->  A  e.  _V )
4 dfsbcq2 2936 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ( ph  /\  ps )  <->  [. A  /  x ]. ( ph  /\  ps ) ) )
5 dfsbcq2 2936 . . . 4  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
6 dfsbcq2 2936 . . . 4  |-  ( y  =  A  ->  ( [ y  /  x ] ps  <->  [. A  /  x ]. ps ) )
75, 6anbi12d 465 . . 3  |-  ( y  =  A  ->  (
( [ y  /  x ] ph  /\  [
y  /  x ] ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) ) )
8 sban 1932 . . 3  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
94, 7, 8vtoclbg 2770 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( ph  /\  ps ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
) )
101, 3, 9pm5.21nii 694 1  |-  ( [. A  /  x ]. ( ph  /\  ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1332   [wsb 1739    e. wcel 2125   _Vcvv 2709   [.wsbc 2933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-sbc 2934
This theorem is referenced by:  sbc3an  2994  difopab  4712  sbcfung  5187  sbcfng  5310  sbcfg  5311  f1od2  6172
  Copyright terms: Public domain W3C validator