![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbc3an | GIF version |
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
sbc3an | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 932 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | sbcbii 2920 | . . 3 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ [𝐴 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | sbcan 2903 | . . 3 ⊢ ([𝐴 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝐴 / 𝑥]𝜒)) | |
4 | sbcan 2903 | . . . 4 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | |
5 | 4 | anbi1i 449 | . . 3 ⊢ (([𝐴 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒)) |
6 | 2, 3, 5 | 3bitri 205 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒)) |
7 | df-3an 932 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒)) | |
8 | 6, 7 | bitr4i 186 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 930 [wsbc 2862 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-sbc 2863 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |