ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc3an GIF version

Theorem sbc3an 3051
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbc3an ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))

Proof of Theorem sbc3an
StepHypRef Expression
1 df-3an 982 . . . 4 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21sbcbii 3049 . . 3 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ [𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒))
3 sbcan 3032 . . 3 ([𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∧ [𝐴 / 𝑥]𝜒))
4 sbcan 3032 . . . 4 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
54anbi1i 458 . . 3 (([𝐴 / 𝑥](𝜑𝜓) ∧ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
62, 3, 53bitri 206 . 2 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
7 df-3an 982 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
86, 7bitr4i 187 1 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980  [wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator