ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc3an GIF version

Theorem sbc3an 3061
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbc3an ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))

Proof of Theorem sbc3an
StepHypRef Expression
1 df-3an 983 . . . 4 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21sbcbii 3059 . . 3 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ [𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒))
3 sbcan 3042 . . 3 ([𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∧ [𝐴 / 𝑥]𝜒))
4 sbcan 3042 . . . 4 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
54anbi1i 458 . . 3 (([𝐴 / 𝑥](𝜑𝜓) ∧ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
62, 3, 53bitri 206 . 2 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
7 df-3an 983 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
86, 7bitr4i 187 1 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 981  [wsbc 2999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3000
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator