ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc8g GIF version

Theorem sbc8g 2997
Description: This is the closest we can get to df-sbc 2990 if we start from dfsbcq 2991 (see its comments) and dfsbcq2 2992. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc8g (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑}))

Proof of Theorem sbc8g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2991 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 eleq1 2259 . 2 (𝑦 = 𝐴 → (𝑦 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
3 df-clab 2183 . . 3 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
4 equid 1715 . . . 4 𝑦 = 𝑦
5 dfsbcq2 2992 . . . 4 (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
64, 5ax-mp 5 . . 3 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
73, 6bitr2i 185 . 2 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
81, 2, 7vtoclbg 2825 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  [wsb 1776  wcel 2167  {cab 2182  [wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990
This theorem is referenced by:  bj-elssuniab  15437
  Copyright terms: Public domain W3C validator