ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccsb2g GIF version

Theorem sbccsb2g 3110
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
sbccsb2g (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑}))

Proof of Theorem sbccsb2g
StepHypRef Expression
1 abid 2181 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
21sbcbii 3045 . 2 ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ [𝐴 / 𝑥]𝜑)
3 sbcel12g 3095 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ 𝐴 / 𝑥𝑥𝐴 / 𝑥{𝑥𝜑}))
4 csbvarg 3108 . . . 4 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
54eleq1d 2262 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝑥𝐴 / 𝑥{𝑥𝜑} ↔ 𝐴𝐴 / 𝑥{𝑥𝜑}))
63, 5bitrd 188 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ 𝐴𝐴 / 𝑥{𝑥𝜑}))
72, 6bitr3id 194 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2164  {cab 2179  [wsbc 2985  csb 3080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986  df-csb 3081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator