![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbccsb2g | GIF version |
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) |
Ref | Expression |
---|---|
sbccsb2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2176 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
2 | 1 | sbcbii 3036 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
3 | sbcel12g 3086 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ⦋𝐴 / 𝑥⦌𝑥 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) | |
4 | csbvarg 3099 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
5 | 4 | eleq1d 2257 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑥 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) |
6 | 3, 5 | bitrd 188 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) |
7 | 2, 6 | bitr3id 194 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2159 {cab 2174 [wsbc 2976 ⦋csb 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-v 2753 df-sbc 2977 df-csb 3072 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |