ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccsbg Unicode version

Theorem sbccsbg 3153
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.)
Assertion
Ref Expression
sbccsbg  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  y  e.  [_ A  /  x ]_ {
y  |  ph }
) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    V( x, y)

Proof of Theorem sbccsbg
StepHypRef Expression
1 abid 2217 . . 3  |-  ( y  e.  { y  | 
ph }  <->  ph )
21sbcbii 3088 . 2  |-  ( [. A  /  x ]. y  e.  { y  |  ph } 
<-> 
[. A  /  x ]. ph )
3 sbcel2g 3145 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  { y  |  ph }  <->  y  e.  [_ A  /  x ]_ { y  |  ph } ) )
42, 3bitr3id 194 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  y  e.  [_ A  /  x ]_ {
y  |  ph }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   {cab 2215   [.wsbc 3028   [_csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-csb 3125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator