ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccsbg Unicode version

Theorem sbccsbg 2959
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.)
Assertion
Ref Expression
sbccsbg  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  y  e.  [_ A  /  x ]_ {
y  |  ph }
) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    V( x, y)

Proof of Theorem sbccsbg
StepHypRef Expression
1 abid 2076 . . 3  |-  ( y  e.  { y  | 
ph }  <->  ph )
21sbcbii 2898 . 2  |-  ( [. A  /  x ]. y  e.  { y  |  ph } 
<-> 
[. A  /  x ]. ph )
3 sbcel2g 2952 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  { y  |  ph }  <->  y  e.  [_ A  /  x ]_ { y  |  ph } ) )
42, 3syl5bbr 192 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  y  e.  [_ A  /  x ]_ {
y  |  ph }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    e. wcel 1438   {cab 2074   [.wsbc 2840   [_csb 2933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-sbc 2841  df-csb 2934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator