ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccsbg GIF version

Theorem sbccsbg 3098
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.)
Assertion
Ref Expression
sbccsbg (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑}))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbccsbg
StepHypRef Expression
1 abid 2175 . . 3 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
21sbcbii 3034 . 2 ([𝐴 / 𝑥]𝑦 ∈ {𝑦𝜑} ↔ [𝐴 / 𝑥]𝜑)
3 sbcel2g 3090 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 ∈ {𝑦𝜑} ↔ 𝑦𝐴 / 𝑥{𝑦𝜑}))
42, 3bitr3id 194 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2158  {cab 2173  [wsbc 2974  csb 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-sbc 2975  df-csb 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator