ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccsbg GIF version

Theorem sbccsbg 3073
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.)
Assertion
Ref Expression
sbccsbg (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑}))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbccsbg
StepHypRef Expression
1 abid 2153 . . 3 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
21sbcbii 3009 . 2 ([𝐴 / 𝑥]𝑦 ∈ {𝑦𝜑} ↔ [𝐴 / 𝑥]𝜑)
3 sbcel2g 3065 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 ∈ {𝑦𝜑} ↔ 𝑦𝐴 / 𝑥{𝑦𝜑}))
42, 3bitr3id 193 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2136  {cab 2151  [wsbc 2950  csb 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-sbc 2951  df-csb 3045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator