Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbccsbg | GIF version |
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) |
Ref | Expression |
---|---|
sbccsbg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2163 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
2 | 1 | sbcbii 3020 | . 2 ⊢ ([𝐴 / 𝑥]𝑦 ∈ {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
3 | sbcel2g 3076 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑})) | |
4 | 2, 3 | bitr3id 194 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2146 {cab 2161 [wsbc 2960 ⦋csb 3055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sbc 2961 df-csb 3056 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |