![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbceq2g | GIF version |
Description: Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.) |
Ref | Expression |
---|---|
sbceq2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqg 2969 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
2 | csbconstg 2967 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | 2 | eqeq1d 2108 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
4 | 1, 3 | bitrd 187 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1299 ∈ wcel 1448 [wsbc 2862 ⦋csb 2955 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-sbc 2863 df-csb 2956 |
This theorem is referenced by: csbsng 3531 f1od2 6062 |
Copyright terms: Public domain | W3C validator |