Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcor | GIF version |
Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
sbcor | ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2963 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) → 𝐴 ∈ V) | |
2 | sbcex 2963 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
3 | sbcex 2963 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 → 𝐴 ∈ V) | |
4 | 2, 3 | jaoi 711 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) → 𝐴 ∈ V) |
5 | dfsbcq2 2958 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓))) | |
6 | dfsbcq2 2958 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
7 | dfsbcq2 2958 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
8 | 6, 7 | orbi12d 788 | . . 3 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) |
9 | sbor 1947 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | |
10 | 5, 8, 9 | vtoclbg 2791 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) |
11 | 1, 4, 10 | pm5.21nii 699 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 = wceq 1348 [wsb 1755 ∈ wcel 2141 Vcvv 2730 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 |
This theorem is referenced by: rabrsndc 3651 |
Copyright terms: Public domain | W3C validator |