| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcor | GIF version | ||
| Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| sbcor | ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3008 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) → 𝐴 ∈ V) | |
| 2 | sbcex 3008 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 3 | sbcex 3008 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 → 𝐴 ∈ V) | |
| 4 | 2, 3 | jaoi 718 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) → 𝐴 ∈ V) |
| 5 | dfsbcq2 3002 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓))) | |
| 6 | dfsbcq2 3002 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 7 | dfsbcq2 3002 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
| 8 | 6, 7 | orbi12d 795 | . . 3 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) |
| 9 | sbor 1983 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | |
| 10 | 5, 8, 9 | vtoclbg 2835 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) |
| 11 | 1, 4, 10 | pm5.21nii 706 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 = wceq 1373 [wsb 1786 ∈ wcel 2177 Vcvv 2773 [wsbc 2999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sbc 3000 |
| This theorem is referenced by: rabrsndc 3702 |
| Copyright terms: Public domain | W3C validator |