ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcor GIF version

Theorem sbcor 3044
Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.)
Assertion
Ref Expression
sbcor ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcor
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3008 . 2 ([𝐴 / 𝑥](𝜑𝜓) → 𝐴 ∈ V)
2 sbcex 3008 . . 3 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
3 sbcex 3008 . . 3 ([𝐴 / 𝑥]𝜓𝐴 ∈ V)
42, 3jaoi 718 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) → 𝐴 ∈ V)
5 dfsbcq2 3002 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
6 dfsbcq2 3002 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
7 dfsbcq2 3002 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
86, 7orbi12d 795 . . 3 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
9 sbor 1983 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
105, 8, 9vtoclbg 2835 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
111, 4, 10pm5.21nii 706 1 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 710   = wceq 1373  [wsb 1786  wcel 2177  Vcvv 2773  [wsbc 2999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3000
This theorem is referenced by:  rabrsndc  3702
  Copyright terms: Public domain W3C validator