ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcang Unicode version

Theorem sbcang 3004
Description: Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcang  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  /\  ps ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
) )

Proof of Theorem sbcang
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2963 . 2  |-  ( y  =  A  ->  ( [ y  /  x ] ( ph  /\  ps )  <->  [. A  /  x ]. ( ph  /\  ps ) ) )
2 dfsbcq2 2963 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
3 dfsbcq2 2963 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ps  <->  [. A  /  x ]. ps ) )
42, 3anbi12d 473 . 2  |-  ( y  =  A  ->  (
( [ y  /  x ] ph  /\  [
y  /  x ] ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) ) )
5 sban 1953 . 2  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
61, 4, 5vtoclbg 2796 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  /\  ps ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   [wsb 1760    e. wcel 2146   [.wsbc 2960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-sbc 2961
This theorem is referenced by:  sbcabel  3042  csbunig  3813  csbxpg  4701
  Copyright terms: Public domain W3C validator