ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcang Unicode version

Theorem sbcang 3041
Description: Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcang  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  /\  ps ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
) )

Proof of Theorem sbcang
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3000 . 2  |-  ( y  =  A  ->  ( [ y  /  x ] ( ph  /\  ps )  <->  [. A  /  x ]. ( ph  /\  ps ) ) )
2 dfsbcq2 3000 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
3 dfsbcq2 3000 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ps  <->  [. A  /  x ]. ps ) )
42, 3anbi12d 473 . 2  |-  ( y  =  A  ->  (
( [ y  /  x ] ph  /\  [
y  /  x ] ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) ) )
5 sban 1982 . 2  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
61, 4, 5vtoclbg 2833 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  /\  ps ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   [wsb 1784    e. wcel 2175   [.wsbc 2997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-sbc 2998
This theorem is referenced by:  sbcabel  3079  csbunig  3857  csbxpg  4755
  Copyright terms: Public domain W3C validator