| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seeq1 | GIF version | ||
| Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| seeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3279 | . . 3 ⊢ (𝑅 = 𝑆 → 𝑆 ⊆ 𝑅) | |
| 2 | sess1 4427 | . . 3 ⊢ (𝑆 ⊆ 𝑅 → (𝑅 Se 𝐴 → 𝑆 Se 𝐴)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 → 𝑆 Se 𝐴)) |
| 4 | eqimss 3278 | . . 3 ⊢ (𝑅 = 𝑆 → 𝑅 ⊆ 𝑆) | |
| 5 | sess1 4427 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝑅 = 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) |
| 7 | 3, 6 | impbid 129 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ⊆ wss 3197 Se wse 4419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 df-br 4083 df-se 4423 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |