ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seeq1 GIF version

Theorem seeq1 4317
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq1 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))

Proof of Theorem seeq1
StepHypRef Expression
1 eqimss2 3197 . . 3 (𝑅 = 𝑆𝑆𝑅)
2 sess1 4315 . . 3 (𝑆𝑅 → (𝑅 Se 𝐴𝑆 Se 𝐴))
31, 2syl 14 . 2 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
4 eqimss 3196 . . 3 (𝑅 = 𝑆𝑅𝑆)
5 sess1 4315 . . 3 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
64, 5syl 14 . 2 (𝑅 = 𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
73, 6impbid 128 1 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wss 3116   Se wse 4307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-br 3983  df-se 4311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator