ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seeq1 GIF version

Theorem seeq1 4219
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq1 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))

Proof of Theorem seeq1
StepHypRef Expression
1 eqimss2 3116 . . 3 (𝑅 = 𝑆𝑆𝑅)
2 sess1 4217 . . 3 (𝑆𝑅 → (𝑅 Se 𝐴𝑆 Se 𝐴))
31, 2syl 14 . 2 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
4 eqimss 3115 . . 3 (𝑅 = 𝑆𝑅𝑆)
5 sess1 4217 . . 3 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
64, 5syl 14 . 2 (𝑅 = 𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
73, 6impbid 128 1 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1312  wss 3035   Se wse 4209
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rab 2397  df-v 2657  df-in 3041  df-ss 3048  df-br 3894  df-se 4213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator