ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setindel GIF version

Theorem setindel 4522
Description: -Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.)
Assertion
Ref Expression
setindel (∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆) → 𝑆 = V)
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem setindel
StepHypRef Expression
1 clelsb1 2275 . . . . . . 7 ([𝑦 / 𝑥]𝑥𝑆𝑦𝑆)
21ralbii 2476 . . . . . 6 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆 ↔ ∀𝑦𝑥 𝑦𝑆)
3 df-ral 2453 . . . . . 6 (∀𝑦𝑥 𝑦𝑆 ↔ ∀𝑦(𝑦𝑥𝑦𝑆))
42, 3bitri 183 . . . . 5 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆 ↔ ∀𝑦(𝑦𝑥𝑦𝑆))
54imbi1i 237 . . . 4 ((∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆𝑥𝑆) ↔ (∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆))
65albii 1463 . . 3 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆𝑥𝑆) ↔ ∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆))
7 ax-setind 4521 . . 3 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆𝑥𝑆) → ∀𝑥 𝑥𝑆)
86, 7sylbir 134 . 2 (∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆) → ∀𝑥 𝑥𝑆)
9 eqv 3434 . 2 (𝑆 = V ↔ ∀𝑥 𝑥𝑆)
108, 9sylibr 133 1 (∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆) → 𝑆 = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346   = wceq 1348  [wsb 1755  wcel 2141  wral 2448  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-v 2732
This theorem is referenced by:  setind  4523
  Copyright terms: Public domain W3C validator