ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setindel GIF version

Theorem setindel 4630
Description: -Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.)
Assertion
Ref Expression
setindel (∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆) → 𝑆 = V)
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem setindel
StepHypRef Expression
1 clelsb1 2334 . . . . . . 7 ([𝑦 / 𝑥]𝑥𝑆𝑦𝑆)
21ralbii 2536 . . . . . 6 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆 ↔ ∀𝑦𝑥 𝑦𝑆)
3 df-ral 2513 . . . . . 6 (∀𝑦𝑥 𝑦𝑆 ↔ ∀𝑦(𝑦𝑥𝑦𝑆))
42, 3bitri 184 . . . . 5 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆 ↔ ∀𝑦(𝑦𝑥𝑦𝑆))
54imbi1i 238 . . . 4 ((∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆𝑥𝑆) ↔ (∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆))
65albii 1516 . . 3 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆𝑥𝑆) ↔ ∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆))
7 ax-setind 4629 . . 3 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆𝑥𝑆) → ∀𝑥 𝑥𝑆)
86, 7sylbir 135 . 2 (∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆) → ∀𝑥 𝑥𝑆)
9 eqv 3511 . 2 (𝑆 = V ↔ ∀𝑥 𝑥𝑆)
108, 9sylibr 134 1 (∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆) → 𝑆 = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393   = wceq 1395  [wsb 1808  wcel 2200  wral 2508  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-v 2801
This theorem is referenced by:  setind  4631
  Copyright terms: Public domain W3C validator