| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setindel | GIF version | ||
| Description: ∈-Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.) |
| Ref | Expression |
|---|---|
| setindel | ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝑆 = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelsb1 2311 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆) | |
| 2 | 1 | ralbii 2513 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑆) |
| 3 | df-ral 2490 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑆 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆)) | |
| 4 | 2, 3 | bitri 184 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆)) |
| 5 | 4 | imbi1i 238 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆)) |
| 6 | 5 | albii 1494 | . . 3 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆)) |
| 7 | ax-setind 4589 | . . 3 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) → ∀𝑥 𝑥 ∈ 𝑆) | |
| 8 | 6, 7 | sylbir 135 | . 2 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → ∀𝑥 𝑥 ∈ 𝑆) |
| 9 | eqv 3481 | . 2 ⊢ (𝑆 = V ↔ ∀𝑥 𝑥 ∈ 𝑆) | |
| 10 | 8, 9 | sylibr 134 | 1 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝑆 = V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 = wceq 1373 [wsb 1786 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ral 2490 df-v 2775 |
| This theorem is referenced by: setind 4591 |
| Copyright terms: Public domain | W3C validator |