Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setindel | GIF version |
Description: ∈-Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.) |
Ref | Expression |
---|---|
setindel | ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝑆 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelsb1 2275 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆) | |
2 | 1 | ralbii 2476 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑆) |
3 | df-ral 2453 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑆 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆)) | |
4 | 2, 3 | bitri 183 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆)) |
5 | 4 | imbi1i 237 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆)) |
6 | 5 | albii 1463 | . . 3 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆)) |
7 | ax-setind 4521 | . . 3 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) → ∀𝑥 𝑥 ∈ 𝑆) | |
8 | 6, 7 | sylbir 134 | . 2 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → ∀𝑥 𝑥 ∈ 𝑆) |
9 | eqv 3434 | . 2 ⊢ (𝑆 = V ↔ ∀𝑥 𝑥 ∈ 𝑆) | |
10 | 8, 9 | sylibr 133 | 1 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝑆 = V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 = wceq 1348 [wsb 1755 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-v 2732 |
This theorem is referenced by: setind 4523 |
Copyright terms: Public domain | W3C validator |