| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setindel | GIF version | ||
| Description: ∈-Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.) |
| Ref | Expression |
|---|---|
| setindel | ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝑆 = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelsb1 2314 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆) | |
| 2 | 1 | ralbii 2516 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑆) |
| 3 | df-ral 2493 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑆 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆)) | |
| 4 | 2, 3 | bitri 184 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆)) |
| 5 | 4 | imbi1i 238 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆)) |
| 6 | 5 | albii 1496 | . . 3 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆)) |
| 7 | ax-setind 4606 | . . 3 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) → ∀𝑥 𝑥 ∈ 𝑆) | |
| 8 | 6, 7 | sylbir 135 | . 2 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → ∀𝑥 𝑥 ∈ 𝑆) |
| 9 | eqv 3491 | . 2 ⊢ (𝑆 = V ↔ ∀𝑥 𝑥 ∈ 𝑆) | |
| 10 | 8, 9 | sylibr 134 | 1 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝑆 = V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1373 = wceq 1375 [wsb 1788 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-ral 2493 df-v 2781 |
| This theorem is referenced by: setind 4608 |
| Copyright terms: Public domain | W3C validator |