Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setindel | GIF version |
Description: ∈-Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.) |
Ref | Expression |
---|---|
setindel | ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝑆 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelsb1 2271 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆) | |
2 | 1 | ralbii 2472 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑆) |
3 | df-ral 2449 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑆 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆)) | |
4 | 2, 3 | bitri 183 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆)) |
5 | 4 | imbi1i 237 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆)) |
6 | 5 | albii 1458 | . . 3 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆)) |
7 | ax-setind 4514 | . . 3 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) → ∀𝑥 𝑥 ∈ 𝑆) | |
8 | 6, 7 | sylbir 134 | . 2 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → ∀𝑥 𝑥 ∈ 𝑆) |
9 | eqv 3428 | . 2 ⊢ (𝑆 = V ↔ ∀𝑥 𝑥 ∈ 𝑆) | |
10 | 8, 9 | sylibr 133 | 1 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝑆 = V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 = wceq 1343 [wsb 1750 ∈ wcel 2136 ∀wral 2444 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-v 2728 |
This theorem is referenced by: setind 4516 |
Copyright terms: Public domain | W3C validator |