ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setindel GIF version

Theorem setindel 4515
Description: -Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.)
Assertion
Ref Expression
setindel (∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆) → 𝑆 = V)
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem setindel
StepHypRef Expression
1 clelsb1 2271 . . . . . . 7 ([𝑦 / 𝑥]𝑥𝑆𝑦𝑆)
21ralbii 2472 . . . . . 6 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆 ↔ ∀𝑦𝑥 𝑦𝑆)
3 df-ral 2449 . . . . . 6 (∀𝑦𝑥 𝑦𝑆 ↔ ∀𝑦(𝑦𝑥𝑦𝑆))
42, 3bitri 183 . . . . 5 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆 ↔ ∀𝑦(𝑦𝑥𝑦𝑆))
54imbi1i 237 . . . 4 ((∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆𝑥𝑆) ↔ (∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆))
65albii 1458 . . 3 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆𝑥𝑆) ↔ ∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆))
7 ax-setind 4514 . . 3 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥𝑆𝑥𝑆) → ∀𝑥 𝑥𝑆)
86, 7sylbir 134 . 2 (∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆) → ∀𝑥 𝑥𝑆)
9 eqv 3428 . 2 (𝑆 = V ↔ ∀𝑥 𝑥𝑆)
108, 9sylibr 133 1 (∀𝑥(∀𝑦(𝑦𝑥𝑦𝑆) → 𝑥𝑆) → 𝑆 = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341   = wceq 1343  [wsb 1750  wcel 2136  wral 2444  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-v 2728
This theorem is referenced by:  setind  4516
  Copyright terms: Public domain W3C validator