ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrguss Unicode version

Theorem subrguss 14113
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1  |-  S  =  ( Rs  A )
subrguss.2  |-  U  =  (Unit `  R )
subrguss.3  |-  V  =  (Unit `  S )
Assertion
Ref Expression
subrguss  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)

Proof of Theorem subrguss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subrguss.3 . . . . . . . . 9  |-  V  =  (Unit `  S )
21a1i 9 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  V  =  (Unit `  S ) )
3 eqidd 2208 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
4 eqidd 2208 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
5 eqidd 2208 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
6 eqidd 2208 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
7 subrguss.1 . . . . . . . . . 10  |-  S  =  ( Rs  A )
87subrgring 14101 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
9 ringsrg 13924 . . . . . . . . 9  |-  ( S  e.  Ring  ->  S  e. SRing
)
108, 9syl 14 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  S  e. SRing )
112, 3, 4, 5, 6, 10isunitd 13983 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  V  <->  ( x (
||r `  S ) ( 1r
`  S )  /\  x ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) ) )
1211simprbda 383 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 S ) ( 1r `  S ) )
13 eqid 2207 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
147, 13subrg1 14108 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
1514adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( 1r `  R )  =  ( 1r `  S
) )
1612, 15breqtrrd 4087 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 S ) ( 1r `  R ) )
17 eqid 2207 . . . . . . . 8  |-  ( ||r `  R
)  =  ( ||r `  R
)
18 eqid 2207 . . . . . . . 8  |-  ( ||r `  S
)  =  ( ||r `  S
)
197, 17, 18subrgdvds 14112 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  C_  ( ||r `  R
) )
2019adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( ||r `  S )  C_  ( ||r `  R ) )
2120ssbrd 4102 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( ||r `
 S ) ( 1r `  R )  ->  x ( ||r `  R
) ( 1r `  R ) ) )
2216, 21mpd 13 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 R ) ( 1r `  R ) )
23 subrgrcl 14103 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
2423adantr 276 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  R  e.  Ring )
25 eqid 2207 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
26 eqid 2207 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
2725, 26opprbasg 13952 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
2824, 27syl 14 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
29 eqidd 2208 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
3025opprring 13956 . . . . . . 7  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
31 ringsrg 13924 . . . . . . 7  |-  ( (oppr `  R )  e.  Ring  -> 
(oppr `  R )  e. SRing )
3224, 30, 313syl 17 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (oppr `  R
)  e. SRing )
33 eqidd 2208 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( .r `  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) ) )
347subrgbas 14107 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
3534adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A  =  ( Base `  S
) )
3626subrgss 14099 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
3736adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A  C_  ( Base `  R
) )
3835, 37eqsstrrd 3238 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  S )  C_  ( Base `  R )
)
39 eqidd 2208 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  S )  =  ( Base `  S
) )
401a1i 9 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  V  =  (Unit `  S )
)
4110adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  S  e. SRing )
42 simpr 110 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  V )
4339, 40, 41, 42unitcld 13985 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  ( Base `  S
) )
4438, 43sseldd 3202 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  ( Base `  R
) )
45 eqid 2207 . . . . . . . . 9  |-  ( invr `  S )  =  (
invr `  S )
46 eqid 2207 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
471, 45, 46ringinvcl 14002 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  S )
)
488, 47sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  S )
)
4938, 48sseldd 3202 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  R )
)
5028, 29, 32, 33, 44, 49dvdsrmuld 13973 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 (oppr
`  R ) ) ( ( ( invr `  S ) `  x
) ( .r `  (oppr `  R ) ) x ) )
511, 45unitinvcl 14000 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
528, 51sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
53 eqid 2207 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
54 eqid 2207 . . . . . . . 8  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
5526, 53, 25, 54opprmulg 13948 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( invr `  S ) `  x )  e.  V  /\  x  e.  V
)  ->  ( (
( invr `  S ) `  x ) ( .r
`  (oppr
`  R ) ) x )  =  ( x ( .r `  R ) ( (
invr `  S ) `  x ) ) )
5624, 52, 42, 55syl3anc 1250 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( ( invr `  S
) `  x )
( .r `  (oppr `  R
) ) x )  =  ( x ( .r `  R ) ( ( invr `  S
) `  x )
) )
57 eqid 2207 . . . . . . . . 9  |-  ( .r
`  S )  =  ( .r `  S
)
58 eqid 2207 . . . . . . . . 9  |-  ( 1r
`  S )  =  ( 1r `  S
)
591, 45, 57, 58unitrinv 14004 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
x ( .r `  S ) ( (
invr `  S ) `  x ) )  =  ( 1r `  S
) )
608, 59sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  S ) ( (
invr `  S ) `  x ) )  =  ( 1r `  S
) )
617, 53ressmulrg 13092 . . . . . . . . . 10  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
6223, 61mpdan 421 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
6362adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( .r `  R )  =  ( .r `  S
) )
6463oveqd 5984 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  R ) ( (
invr `  S ) `  x ) )  =  ( x ( .r
`  S ) ( ( invr `  S
) `  x )
) )
6560, 64, 153eqtr4d 2250 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  R ) ( (
invr `  S ) `  x ) )  =  ( 1r `  R
) )
6656, 65eqtrd 2240 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( ( invr `  S
) `  x )
( .r `  (oppr `  R
) ) x )  =  ( 1r `  R ) )
6750, 66breqtrd 4085 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
68 subrguss.2 . . . . . . 7  |-  U  =  (Unit `  R )
6968a1i 9 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  U  =  (Unit `  R ) )
70 eqidd 2208 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  R ) )
71 eqidd 2208 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  R
)  =  ( ||r `  R
) )
72 eqidd 2208 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  R )  =  (oppr
`  R ) )
73 eqidd 2208 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
74 ringsrg 13924 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
7523, 74syl 14 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e. SRing )
7669, 70, 71, 72, 73, 75isunitd 13983 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  U  <->  ( x (
||r `  R ) ( 1r
`  R )  /\  x ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) ) )
7776adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x  e.  U  <->  ( x
( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
7822, 67, 77mpbir2and 947 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  U )
7978ex 115 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  V  ->  x  e.  U ) )
8079ssrdv 3207 1  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    C_ wss 3174   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   .rcmulr 13025   1rcur 13836  SRingcsrg 13840   Ringcrg 13873  opprcoppr 13944   ||rcdsr 13963  Unitcui 13964   invrcinvr 13997  SubRingcsubrg 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-subg 13621  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-oppr 13945  df-dvdsr 13966  df-unit 13967  df-invr 13998  df-subrg 14096
This theorem is referenced by:  subrginv  14114  subrgdv  14115  subrgunit  14116  subrgugrp  14117
  Copyright terms: Public domain W3C validator