ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrguss Unicode version

Theorem subrguss 13868
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1  |-  S  =  ( Rs  A )
subrguss.2  |-  U  =  (Unit `  R )
subrguss.3  |-  V  =  (Unit `  S )
Assertion
Ref Expression
subrguss  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)

Proof of Theorem subrguss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subrguss.3 . . . . . . . . 9  |-  V  =  (Unit `  S )
21a1i 9 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  V  =  (Unit `  S ) )
3 eqidd 2197 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
4 eqidd 2197 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
5 eqidd 2197 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
6 eqidd 2197 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
7 subrguss.1 . . . . . . . . . 10  |-  S  =  ( Rs  A )
87subrgring 13856 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
9 ringsrg 13679 . . . . . . . . 9  |-  ( S  e.  Ring  ->  S  e. SRing
)
108, 9syl 14 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  S  e. SRing )
112, 3, 4, 5, 6, 10isunitd 13738 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  V  <->  ( x (
||r `  S ) ( 1r
`  S )  /\  x ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) ) )
1211simprbda 383 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 S ) ( 1r `  S ) )
13 eqid 2196 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
147, 13subrg1 13863 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
1514adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( 1r `  R )  =  ( 1r `  S
) )
1612, 15breqtrrd 4062 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 S ) ( 1r `  R ) )
17 eqid 2196 . . . . . . . 8  |-  ( ||r `  R
)  =  ( ||r `  R
)
18 eqid 2196 . . . . . . . 8  |-  ( ||r `  S
)  =  ( ||r `  S
)
197, 17, 18subrgdvds 13867 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  C_  ( ||r `  R
) )
2019adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( ||r `  S )  C_  ( ||r `  R ) )
2120ssbrd 4077 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( ||r `
 S ) ( 1r `  R )  ->  x ( ||r `  R
) ( 1r `  R ) ) )
2216, 21mpd 13 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 R ) ( 1r `  R ) )
23 subrgrcl 13858 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
2423adantr 276 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  R  e.  Ring )
25 eqid 2196 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
26 eqid 2196 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
2725, 26opprbasg 13707 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
2824, 27syl 14 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
29 eqidd 2197 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
3025opprring 13711 . . . . . . 7  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
31 ringsrg 13679 . . . . . . 7  |-  ( (oppr `  R )  e.  Ring  -> 
(oppr `  R )  e. SRing )
3224, 30, 313syl 17 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (oppr `  R
)  e. SRing )
33 eqidd 2197 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( .r `  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) ) )
347subrgbas 13862 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
3534adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A  =  ( Base `  S
) )
3626subrgss 13854 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
3736adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A  C_  ( Base `  R
) )
3835, 37eqsstrrd 3221 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  S )  C_  ( Base `  R )
)
39 eqidd 2197 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  S )  =  ( Base `  S
) )
401a1i 9 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  V  =  (Unit `  S )
)
4110adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  S  e. SRing )
42 simpr 110 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  V )
4339, 40, 41, 42unitcld 13740 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  ( Base `  S
) )
4438, 43sseldd 3185 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  ( Base `  R
) )
45 eqid 2196 . . . . . . . . 9  |-  ( invr `  S )  =  (
invr `  S )
46 eqid 2196 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
471, 45, 46ringinvcl 13757 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  S )
)
488, 47sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  S )
)
4938, 48sseldd 3185 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  R )
)
5028, 29, 32, 33, 44, 49dvdsrmuld 13728 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 (oppr
`  R ) ) ( ( ( invr `  S ) `  x
) ( .r `  (oppr `  R ) ) x ) )
511, 45unitinvcl 13755 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
528, 51sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
53 eqid 2196 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
54 eqid 2196 . . . . . . . 8  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
5526, 53, 25, 54opprmulg 13703 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( invr `  S ) `  x )  e.  V  /\  x  e.  V
)  ->  ( (
( invr `  S ) `  x ) ( .r
`  (oppr
`  R ) ) x )  =  ( x ( .r `  R ) ( (
invr `  S ) `  x ) ) )
5624, 52, 42, 55syl3anc 1249 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( ( invr `  S
) `  x )
( .r `  (oppr `  R
) ) x )  =  ( x ( .r `  R ) ( ( invr `  S
) `  x )
) )
57 eqid 2196 . . . . . . . . 9  |-  ( .r
`  S )  =  ( .r `  S
)
58 eqid 2196 . . . . . . . . 9  |-  ( 1r
`  S )  =  ( 1r `  S
)
591, 45, 57, 58unitrinv 13759 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
x ( .r `  S ) ( (
invr `  S ) `  x ) )  =  ( 1r `  S
) )
608, 59sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  S ) ( (
invr `  S ) `  x ) )  =  ( 1r `  S
) )
617, 53ressmulrg 12847 . . . . . . . . . 10  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
6223, 61mpdan 421 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
6362adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( .r `  R )  =  ( .r `  S
) )
6463oveqd 5942 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  R ) ( (
invr `  S ) `  x ) )  =  ( x ( .r
`  S ) ( ( invr `  S
) `  x )
) )
6560, 64, 153eqtr4d 2239 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  R ) ( (
invr `  S ) `  x ) )  =  ( 1r `  R
) )
6656, 65eqtrd 2229 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( ( invr `  S
) `  x )
( .r `  (oppr `  R
) ) x )  =  ( 1r `  R ) )
6750, 66breqtrd 4060 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
68 subrguss.2 . . . . . . 7  |-  U  =  (Unit `  R )
6968a1i 9 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  U  =  (Unit `  R ) )
70 eqidd 2197 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  R ) )
71 eqidd 2197 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  R
)  =  ( ||r `  R
) )
72 eqidd 2197 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  R )  =  (oppr
`  R ) )
73 eqidd 2197 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
74 ringsrg 13679 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
7523, 74syl 14 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e. SRing )
7669, 70, 71, 72, 73, 75isunitd 13738 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  U  <->  ( x (
||r `  R ) ( 1r
`  R )  /\  x ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) ) )
7776adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x  e.  U  <->  ( x
( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
7822, 67, 77mpbir2and 946 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  U )
7978ex 115 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  V  ->  x  e.  U ) )
8079ssrdv 3190 1  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    C_ wss 3157   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   .rcmulr 12781   1rcur 13591  SRingcsrg 13595   Ringcrg 13628  opprcoppr 13699   ||rcdsr 13718  Unitcui 13719   invrcinvr 13752  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-subg 13376  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753  df-subrg 13851
This theorem is referenced by:  subrginv  13869  subrgdv  13870  subrgunit  13871  subrgugrp  13872
  Copyright terms: Public domain W3C validator