ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrguss Unicode version

Theorem subrguss 13735
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1  |-  S  =  ( Rs  A )
subrguss.2  |-  U  =  (Unit `  R )
subrguss.3  |-  V  =  (Unit `  S )
Assertion
Ref Expression
subrguss  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)

Proof of Theorem subrguss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subrguss.3 . . . . . . . . 9  |-  V  =  (Unit `  S )
21a1i 9 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  V  =  (Unit `  S ) )
3 eqidd 2194 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
4 eqidd 2194 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
5 eqidd 2194 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
6 eqidd 2194 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
7 subrguss.1 . . . . . . . . . 10  |-  S  =  ( Rs  A )
87subrgring 13723 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
9 ringsrg 13546 . . . . . . . . 9  |-  ( S  e.  Ring  ->  S  e. SRing
)
108, 9syl 14 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  S  e. SRing )
112, 3, 4, 5, 6, 10isunitd 13605 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  V  <->  ( x (
||r `  S ) ( 1r
`  S )  /\  x ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) ) )
1211simprbda 383 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 S ) ( 1r `  S ) )
13 eqid 2193 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
147, 13subrg1 13730 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
1514adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( 1r `  R )  =  ( 1r `  S
) )
1612, 15breqtrrd 4058 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 S ) ( 1r `  R ) )
17 eqid 2193 . . . . . . . 8  |-  ( ||r `  R
)  =  ( ||r `  R
)
18 eqid 2193 . . . . . . . 8  |-  ( ||r `  S
)  =  ( ||r `  S
)
197, 17, 18subrgdvds 13734 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  C_  ( ||r `  R
) )
2019adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( ||r `  S )  C_  ( ||r `  R ) )
2120ssbrd 4073 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( ||r `
 S ) ( 1r `  R )  ->  x ( ||r `  R
) ( 1r `  R ) ) )
2216, 21mpd 13 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 R ) ( 1r `  R ) )
23 subrgrcl 13725 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
2423adantr 276 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  R  e.  Ring )
25 eqid 2193 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
26 eqid 2193 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
2725, 26opprbasg 13574 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
2824, 27syl 14 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
29 eqidd 2194 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
3025opprring 13578 . . . . . . 7  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
31 ringsrg 13546 . . . . . . 7  |-  ( (oppr `  R )  e.  Ring  -> 
(oppr `  R )  e. SRing )
3224, 30, 313syl 17 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (oppr `  R
)  e. SRing )
33 eqidd 2194 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( .r `  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) ) )
347subrgbas 13729 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
3534adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A  =  ( Base `  S
) )
3626subrgss 13721 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
3736adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A  C_  ( Base `  R
) )
3835, 37eqsstrrd 3217 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  S )  C_  ( Base `  R )
)
39 eqidd 2194 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  S )  =  ( Base `  S
) )
401a1i 9 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  V  =  (Unit `  S )
)
4110adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  S  e. SRing )
42 simpr 110 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  V )
4339, 40, 41, 42unitcld 13607 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  ( Base `  S
) )
4438, 43sseldd 3181 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  ( Base `  R
) )
45 eqid 2193 . . . . . . . . 9  |-  ( invr `  S )  =  (
invr `  S )
46 eqid 2193 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
471, 45, 46ringinvcl 13624 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  S )
)
488, 47sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  S )
)
4938, 48sseldd 3181 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  R )
)
5028, 29, 32, 33, 44, 49dvdsrmuld 13595 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 (oppr
`  R ) ) ( ( ( invr `  S ) `  x
) ( .r `  (oppr `  R ) ) x ) )
511, 45unitinvcl 13622 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
528, 51sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
53 eqid 2193 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
54 eqid 2193 . . . . . . . 8  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
5526, 53, 25, 54opprmulg 13570 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( invr `  S ) `  x )  e.  V  /\  x  e.  V
)  ->  ( (
( invr `  S ) `  x ) ( .r
`  (oppr
`  R ) ) x )  =  ( x ( .r `  R ) ( (
invr `  S ) `  x ) ) )
5624, 52, 42, 55syl3anc 1249 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( ( invr `  S
) `  x )
( .r `  (oppr `  R
) ) x )  =  ( x ( .r `  R ) ( ( invr `  S
) `  x )
) )
57 eqid 2193 . . . . . . . . 9  |-  ( .r
`  S )  =  ( .r `  S
)
58 eqid 2193 . . . . . . . . 9  |-  ( 1r
`  S )  =  ( 1r `  S
)
591, 45, 57, 58unitrinv 13626 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
x ( .r `  S ) ( (
invr `  S ) `  x ) )  =  ( 1r `  S
) )
608, 59sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  S ) ( (
invr `  S ) `  x ) )  =  ( 1r `  S
) )
617, 53ressmulrg 12765 . . . . . . . . . 10  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
6223, 61mpdan 421 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
6362adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( .r `  R )  =  ( .r `  S
) )
6463oveqd 5936 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  R ) ( (
invr `  S ) `  x ) )  =  ( x ( .r
`  S ) ( ( invr `  S
) `  x )
) )
6560, 64, 153eqtr4d 2236 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  R ) ( (
invr `  S ) `  x ) )  =  ( 1r `  R
) )
6656, 65eqtrd 2226 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( ( invr `  S
) `  x )
( .r `  (oppr `  R
) ) x )  =  ( 1r `  R ) )
6750, 66breqtrd 4056 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
68 subrguss.2 . . . . . . 7  |-  U  =  (Unit `  R )
6968a1i 9 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  U  =  (Unit `  R ) )
70 eqidd 2194 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  R ) )
71 eqidd 2194 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  R
)  =  ( ||r `  R
) )
72 eqidd 2194 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  R )  =  (oppr
`  R ) )
73 eqidd 2194 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
74 ringsrg 13546 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
7523, 74syl 14 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e. SRing )
7669, 70, 71, 72, 73, 75isunitd 13605 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  U  <->  ( x (
||r `  R ) ( 1r
`  R )  /\  x ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) ) )
7776adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x  e.  U  <->  ( x
( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
7822, 67, 77mpbir2and 946 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  U )
7978ex 115 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  V  ->  x  e.  U ) )
8079ssrdv 3186 1  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    C_ wss 3154   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   Basecbs 12621   ↾s cress 12622   .rcmulr 12699   1rcur 13458  SRingcsrg 13462   Ringcrg 13495  opprcoppr 13566   ||rcdsr 13585  Unitcui 13586   invrcinvr 13619  SubRingcsubrg 13716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-invr 13620  df-subrg 13718
This theorem is referenced by:  subrginv  13736  subrgdv  13737  subrgunit  13738  subrgugrp  13739
  Copyright terms: Public domain W3C validator