ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrguss Unicode version

Theorem subrguss 13998
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1  |-  S  =  ( Rs  A )
subrguss.2  |-  U  =  (Unit `  R )
subrguss.3  |-  V  =  (Unit `  S )
Assertion
Ref Expression
subrguss  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)

Proof of Theorem subrguss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subrguss.3 . . . . . . . . 9  |-  V  =  (Unit `  S )
21a1i 9 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  V  =  (Unit `  S ) )
3 eqidd 2206 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
4 eqidd 2206 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
5 eqidd 2206 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
6 eqidd 2206 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
7 subrguss.1 . . . . . . . . . 10  |-  S  =  ( Rs  A )
87subrgring 13986 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
9 ringsrg 13809 . . . . . . . . 9  |-  ( S  e.  Ring  ->  S  e. SRing
)
108, 9syl 14 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  S  e. SRing )
112, 3, 4, 5, 6, 10isunitd 13868 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  V  <->  ( x (
||r `  S ) ( 1r
`  S )  /\  x ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) ) )
1211simprbda 383 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 S ) ( 1r `  S ) )
13 eqid 2205 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
147, 13subrg1 13993 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
1514adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( 1r `  R )  =  ( 1r `  S
) )
1612, 15breqtrrd 4072 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 S ) ( 1r `  R ) )
17 eqid 2205 . . . . . . . 8  |-  ( ||r `  R
)  =  ( ||r `  R
)
18 eqid 2205 . . . . . . . 8  |-  ( ||r `  S
)  =  ( ||r `  S
)
197, 17, 18subrgdvds 13997 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  C_  ( ||r `  R
) )
2019adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( ||r `  S )  C_  ( ||r `  R ) )
2120ssbrd 4087 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( ||r `
 S ) ( 1r `  R )  ->  x ( ||r `  R
) ( 1r `  R ) ) )
2216, 21mpd 13 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 R ) ( 1r `  R ) )
23 subrgrcl 13988 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
2423adantr 276 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  R  e.  Ring )
25 eqid 2205 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
26 eqid 2205 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
2725, 26opprbasg 13837 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
2824, 27syl 14 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
29 eqidd 2206 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
3025opprring 13841 . . . . . . 7  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
31 ringsrg 13809 . . . . . . 7  |-  ( (oppr `  R )  e.  Ring  -> 
(oppr `  R )  e. SRing )
3224, 30, 313syl 17 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (oppr `  R
)  e. SRing )
33 eqidd 2206 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( .r `  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) ) )
347subrgbas 13992 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
3534adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A  =  ( Base `  S
) )
3626subrgss 13984 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
3736adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A  C_  ( Base `  R
) )
3835, 37eqsstrrd 3230 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  S )  C_  ( Base `  R )
)
39 eqidd 2206 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( Base `  S )  =  ( Base `  S
) )
401a1i 9 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  V  =  (Unit `  S )
)
4110adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  S  e. SRing )
42 simpr 110 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  V )
4339, 40, 41, 42unitcld 13870 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  ( Base `  S
) )
4438, 43sseldd 3194 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  ( Base `  R
) )
45 eqid 2205 . . . . . . . . 9  |-  ( invr `  S )  =  (
invr `  S )
46 eqid 2205 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
471, 45, 46ringinvcl 13887 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  S )
)
488, 47sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  S )
)
4938, 48sseldd 3194 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  (
Base `  R )
)
5028, 29, 32, 33, 44, 49dvdsrmuld 13858 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 (oppr
`  R ) ) ( ( ( invr `  S ) `  x
) ( .r `  (oppr `  R ) ) x ) )
511, 45unitinvcl 13885 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
528, 51sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
53 eqid 2205 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
54 eqid 2205 . . . . . . . 8  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
5526, 53, 25, 54opprmulg 13833 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( invr `  S ) `  x )  e.  V  /\  x  e.  V
)  ->  ( (
( invr `  S ) `  x ) ( .r
`  (oppr
`  R ) ) x )  =  ( x ( .r `  R ) ( (
invr `  S ) `  x ) ) )
5624, 52, 42, 55syl3anc 1250 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( ( invr `  S
) `  x )
( .r `  (oppr `  R
) ) x )  =  ( x ( .r `  R ) ( ( invr `  S
) `  x )
) )
57 eqid 2205 . . . . . . . . 9  |-  ( .r
`  S )  =  ( .r `  S
)
58 eqid 2205 . . . . . . . . 9  |-  ( 1r
`  S )  =  ( 1r `  S
)
591, 45, 57, 58unitrinv 13889 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
x ( .r `  S ) ( (
invr `  S ) `  x ) )  =  ( 1r `  S
) )
608, 59sylan 283 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  S ) ( (
invr `  S ) `  x ) )  =  ( 1r `  S
) )
617, 53ressmulrg 12977 . . . . . . . . . 10  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
6223, 61mpdan 421 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
6362adantr 276 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( .r `  R )  =  ( .r `  S
) )
6463oveqd 5961 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  R ) ( (
invr `  S ) `  x ) )  =  ( x ( .r
`  S ) ( ( invr `  S
) `  x )
) )
6560, 64, 153eqtr4d 2248 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x ( .r `  R ) ( (
invr `  S ) `  x ) )  =  ( 1r `  R
) )
6656, 65eqtrd 2238 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( ( invr `  S
) `  x )
( .r `  (oppr `  R
) ) x )  =  ( 1r `  R ) )
6750, 66breqtrd 4070 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
68 subrguss.2 . . . . . . 7  |-  U  =  (Unit `  R )
6968a1i 9 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  U  =  (Unit `  R ) )
70 eqidd 2206 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  R ) )
71 eqidd 2206 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  R
)  =  ( ||r `  R
) )
72 eqidd 2206 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  R )  =  (oppr
`  R ) )
73 eqidd 2206 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
74 ringsrg 13809 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
7523, 74syl 14 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e. SRing )
7669, 70, 71, 72, 73, 75isunitd 13868 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  U  <->  ( x (
||r `  R ) ( 1r
`  R )  /\  x ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) ) )
7776adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
x  e.  U  <->  ( x
( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
7822, 67, 77mpbir2and 947 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  x  e.  U )
7978ex 115 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  V  ->  x  e.  U ) )
8079ssrdv 3199 1  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    C_ wss 3166   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   .rcmulr 12910   1rcur 13721  SRingcsrg 13725   Ringcrg 13758  opprcoppr 13829   ||rcdsr 13848  Unitcui 13849   invrcinvr 13882  SubRingcsubrg 13979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-oppr 13830  df-dvdsr 13851  df-unit 13852  df-invr 13883  df-subrg 13981
This theorem is referenced by:  subrginv  13999  subrgdv  14000  subrgunit  14001  subrgugrp  14002
  Copyright terms: Public domain W3C validator