ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tg1 Unicode version

Theorem tg1 12071
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg1  |-  ( A  e.  ( topGen `  B
)  ->  A  C_  U. B
)

Proof of Theorem tg1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-topgen 11984 . . . . 5  |-  topGen  =  ( x  e.  _V  |->  { y  |  y  C_  U. ( x  i^i  ~P y ) } )
21funmpt2 5120 . . . 4  |-  Fun  topGen
3 funrel 5098 . . . 4  |-  ( Fun  topGen  ->  Rel  topGen )
42, 3ax-mp 7 . . 3  |-  Rel  topGen
5 relelfvdm 5407 . . 3  |-  ( ( Rel  topGen  /\  A  e.  ( topGen `  B )
)  ->  B  e.  dom  topGen )
64, 5mpan 418 . 2  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
7 eltg2 12065 . . 3  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
87simprbda 378 . 2  |-  ( ( B  e.  dom  topGen  /\  A  e.  ( topGen `  B )
)  ->  A  C_  U. B
)
96, 8mpancom 416 1  |-  ( A  e.  ( topGen `  B
)  ->  A  C_  U. B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1463   {cab 2101   A.wral 2390   E.wrex 2391   _Vcvv 2657    i^i cin 3036    C_ wss 3037   ~Pcpw 3476   U.cuni 3702   dom cdm 4499   Rel wrel 4504   Fun wfun 5075   ` cfv 5081   topGenctg 11978
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-topgen 11984
This theorem is referenced by:  unitg  12074  tgcl  12076
  Copyright terms: Public domain W3C validator