ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smofvon2dm Unicode version

Theorem smofvon2dm 6275
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smofvon2dm  |-  ( ( Smo  F  /\  B  e.  dom  F )  -> 
( F `  B
)  e.  On )

Proof of Theorem smofvon2dm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 6266 . . 3  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
21simp1bi 1007 . 2  |-  ( Smo 
F  ->  F : dom  F --> On )
32ffvelrnda 5631 1  |-  ( ( Smo  F  /\  B  e.  dom  F )  -> 
( F `  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   A.wral 2448   Ord word 4347   Oncon0 4348   dom cdm 4611   -->wf 5194   ` cfv 5198   Smo wsmo 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-smo 6265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator