ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smofvon2dm Unicode version

Theorem smofvon2dm 6264
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smofvon2dm  |-  ( ( Smo  F  /\  B  e.  dom  F )  -> 
( F `  B
)  e.  On )

Proof of Theorem smofvon2dm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 6255 . . 3  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
21simp1bi 1002 . 2  |-  ( Smo 
F  ->  F : dom  F --> On )
32ffvelrnda 5620 1  |-  ( ( Smo  F  /\  B  e.  dom  F )  -> 
( F `  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   A.wral 2444   Ord word 4340   Oncon0 4341   dom cdm 4604   -->wf 5184   ` cfv 5188   Smo wsmo 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-smo 6254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator