ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordeq Unicode version

Theorem ordeq 4408
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
ordeq  |-  ( A  =  B  ->  ( Ord  A  <->  Ord  B ) )

Proof of Theorem ordeq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 treq 4138 . . 3  |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B )
)
2 raleq 2693 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  Tr  x  <->  A. x  e.  B  Tr  x ) )
31, 2anbi12d 473 . 2  |-  ( A  =  B  ->  (
( Tr  A  /\  A. x  e.  A  Tr  x )  <->  ( Tr  B  /\  A. x  e.  B  Tr  x ) ) )
4 dford3 4403 . 2  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
5 dford3 4403 . 2  |-  ( Ord 
B  <->  ( Tr  B  /\  A. x  e.  B  Tr  x ) )
63, 4, 53bitr4g 223 1  |-  ( A  =  B  ->  ( Ord  A  <->  Ord  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2475   Tr wtr 4132   Ord word 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-in 3163  df-ss 3170  df-uni 3841  df-tr 4133  df-iord 4402
This theorem is referenced by:  elong  4409  limeq  4413  ordelord  4417  ordtriexmidlem  4556  2ordpr  4561  issmo  6355  issmo2  6356  smoeq  6357  smores  6359  smores2  6361  smodm2  6362  smoiso  6369  tfrlem8  6385  tfri1dALT  6418
  Copyright terms: Public domain W3C validator