Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordeq | Unicode version |
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
ordeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 4086 | . . 3 | |
2 | raleq 2661 | . . 3 | |
3 | 1, 2 | anbi12d 465 | . 2 |
4 | dford3 4345 | . 2 | |
5 | dford3 4345 | . 2 | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wral 2444 wtr 4080 word 4340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 |
This theorem is referenced by: elong 4351 limeq 4355 ordelord 4359 ordtriexmidlem 4496 2ordpr 4501 issmo 6256 issmo2 6257 smoeq 6258 smores 6260 smores2 6262 smodm2 6263 smoiso 6270 tfrlem8 6286 tfri1dALT 6319 |
Copyright terms: Public domain | W3C validator |