ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordeq Unicode version

Theorem ordeq 4374
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
ordeq  |-  ( A  =  B  ->  ( Ord  A  <->  Ord  B ) )

Proof of Theorem ordeq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 treq 4109 . . 3  |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B )
)
2 raleq 2673 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  Tr  x  <->  A. x  e.  B  Tr  x ) )
31, 2anbi12d 473 . 2  |-  ( A  =  B  ->  (
( Tr  A  /\  A. x  e.  A  Tr  x )  <->  ( Tr  B  /\  A. x  e.  B  Tr  x ) ) )
4 dford3 4369 . 2  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
5 dford3 4369 . 2  |-  ( Ord 
B  <->  ( Tr  B  /\  A. x  e.  B  Tr  x ) )
63, 4, 53bitr4g 223 1  |-  ( A  =  B  ->  ( Ord  A  <->  Ord  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   A.wral 2455   Tr wtr 4103   Ord word 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368
This theorem is referenced by:  elong  4375  limeq  4379  ordelord  4383  ordtriexmidlem  4520  2ordpr  4525  issmo  6291  issmo2  6292  smoeq  6293  smores  6295  smores2  6297  smodm2  6298  smoiso  6305  tfrlem8  6321  tfri1dALT  6354
  Copyright terms: Public domain W3C validator