| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordeq | Unicode version | ||
| Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| ordeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | treq 4164 |
. . 3
| |
| 2 | raleq 2705 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | dford3 4432 |
. 2
| |
| 5 | dford3 4432 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-in 3180 df-ss 3187 df-uni 3865 df-tr 4159 df-iord 4431 |
| This theorem is referenced by: elong 4438 limeq 4442 ordelord 4446 ordtriexmidlem 4585 2ordpr 4590 issmo 6397 issmo2 6398 smoeq 6399 smores 6401 smores2 6403 smodm2 6404 smoiso 6411 tfrlem8 6427 tfri1dALT 6460 |
| Copyright terms: Public domain | W3C validator |