ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqr GIF version

Theorem sneqr 3747
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
sneqr ({𝐴} = {𝐵} → 𝐴 = 𝐵)

Proof of Theorem sneqr
StepHypRef Expression
1 sneqr.1 . . . 4 𝐴 ∈ V
21snid 3614 . . 3 𝐴 ∈ {𝐴}
3 eleq2 2234 . . 3 ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵}))
42, 3mpbii 147 . 2 ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵})
51elsn 3599 . 2 (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)
64, 5sylib 121 1 ({𝐴} = {𝐵} → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Vcvv 2730  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sn 3589
This theorem is referenced by:  sneqrg  3749  opth1  4221  cc2lem  7228
  Copyright terms: Public domain W3C validator