| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqr | GIF version | ||
| Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneqr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snid 3697 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 3 | eleq2 2293 | . . 3 ⊢ ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵})) | |
| 4 | 2, 3 | mpbii 148 | . 2 ⊢ ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵}) |
| 5 | 1 | elsn 3682 | . 2 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| 6 | 4, 5 | sylib 122 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: sneqrg 3839 opth1 4321 cc2lem 7448 |
| Copyright terms: Public domain | W3C validator |