| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqr | GIF version | ||
| Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneqr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snid 3654 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 3 | eleq2 2260 | . . 3 ⊢ ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵})) | |
| 4 | 2, 3 | mpbii 148 | . 2 ⊢ ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵}) |
| 5 | 1 | elsn 3639 | . 2 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| 6 | 4, 5 | sylib 122 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 |
| This theorem is referenced by: sneqrg 3793 opth1 4270 cc2lem 7349 |
| Copyright terms: Public domain | W3C validator |