![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sneqr | GIF version |
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
Ref | Expression |
---|---|
sneqr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 3649 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
3 | eleq2 2257 | . . 3 ⊢ ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵})) | |
4 | 2, 3 | mpbii 148 | . 2 ⊢ ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵}) |
5 | 1 | elsn 3634 | . 2 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
6 | 4, 5 | sylib 122 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3624 |
This theorem is referenced by: sneqrg 3788 opth1 4265 cc2lem 7326 |
Copyright terms: Public domain | W3C validator |