Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sneqr | GIF version |
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
Ref | Expression |
---|---|
sneqr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 3607 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
3 | eleq2 2230 | . . 3 ⊢ ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵})) | |
4 | 2, 3 | mpbii 147 | . 2 ⊢ ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵}) |
5 | 1 | elsn 3592 | . 2 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
6 | 4, 5 | sylib 121 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: sneqrg 3742 opth1 4214 cc2lem 7207 |
Copyright terms: Public domain | W3C validator |