ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsn Unicode version

Theorem elsn 3623
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
Hypothesis
Ref Expression
elsn.1  |-  A  e. 
_V
Assertion
Ref Expression
elsn  |-  ( A  e.  { B }  <->  A  =  B )

Proof of Theorem elsn
StepHypRef Expression
1 elsn.1 . 2  |-  A  e. 
_V
2 elsng 3622 . 2  |-  ( A  e.  _V  ->  ( A  e.  { B } 
<->  A  =  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  { B }  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2160   _Vcvv 2752   {csn 3607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-sn 3613
This theorem is referenced by:  velsn  3624  sneqr  3775  onsucelsucexmid  4544  ordsoexmid  4576  opthprc  4692  dmsnm  5109  dmsnopg  5115  cnvcnvsn  5120  sniota  5222  fsn  5704  eusvobj2  5877  mapdm0  6681  djulclb  7072  pw1nel3  7248  sucpw1nel3  7250  opelreal  7844
  Copyright terms: Public domain W3C validator