Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elsn | Unicode version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elsn.1 |
Ref | Expression |
---|---|
elsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn.1 | . 2 | |
2 | elsng 3591 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wcel 2136 cvv 2726 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: velsn 3593 sneqr 3740 onsucelsucexmid 4507 ordsoexmid 4539 opthprc 4655 dmsnm 5069 dmsnopg 5075 cnvcnvsn 5080 sniota 5180 fsn 5657 eusvobj2 5828 mapdm0 6629 djulclb 7020 pw1nel3 7187 sucpw1nel3 7189 opelreal 7768 |
Copyright terms: Public domain | W3C validator |