| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elsn | Unicode version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) | 
| Ref | Expression | 
|---|---|
| elsn.1 | 
 | 
| Ref | Expression | 
|---|---|
| elsn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elsn.1 | 
. 2
 | |
| 2 | elsng 3637 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3628 | 
| This theorem is referenced by: velsn 3639 sneqr 3790 onsucelsucexmid 4566 ordsoexmid 4598 opthprc 4714 dmsnm 5135 dmsnopg 5141 cnvcnvsn 5146 sniota 5249 fsn 5734 eusvobj2 5908 mapdm0 6722 djulclb 7121 pw1nel3 7298 sucpw1nel3 7300 opelreal 7894 | 
| Copyright terms: Public domain | W3C validator |