ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsn Unicode version

Theorem elsn 3638
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
Hypothesis
Ref Expression
elsn.1  |-  A  e. 
_V
Assertion
Ref Expression
elsn  |-  ( A  e.  { B }  <->  A  =  B )

Proof of Theorem elsn
StepHypRef Expression
1 elsn.1 . 2  |-  A  e. 
_V
2 elsng 3637 . 2  |-  ( A  e.  _V  ->  ( A  e.  { B } 
<->  A  =  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  { B }  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sn 3628
This theorem is referenced by:  velsn  3639  sneqr  3790  onsucelsucexmid  4566  ordsoexmid  4598  opthprc  4714  dmsnm  5135  dmsnopg  5141  cnvcnvsn  5146  sniota  5249  fsn  5734  eusvobj2  5908  mapdm0  6722  djulclb  7121  pw1nel3  7298  sucpw1nel3  7300  opelreal  7894
  Copyright terms: Public domain W3C validator