| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsn | Unicode version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elsn.1 |
|
| Ref | Expression |
|---|---|
| elsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsn.1 |
. 2
| |
| 2 | elsng 3658 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sn 3649 |
| This theorem is referenced by: velsn 3660 sneqr 3814 onsucelsucexmid 4596 ordsoexmid 4628 opthprc 4744 dmsnm 5167 dmsnopg 5173 cnvcnvsn 5178 sniota 5281 fsn 5775 eusvobj2 5953 mapdm0 6773 djulclb 7183 pw1nel3 7377 sucpw1nel3 7379 opelreal 7975 |
| Copyright terms: Public domain | W3C validator |