Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc2lem | Unicode version |
Description: Lemma for cc2 7208. (Contributed by Jim Kingdon, 27-Apr-2024.) |
Ref | Expression |
---|---|
cc2.cc | CCHOICE |
cc2.a | |
cc2.m | |
cc2lem.a | |
cc2lem.g |
Ref | Expression |
---|---|
cc2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc2.cc | . . 3 CCHOICE | |
2 | vex 2729 | . . . . . . . 8 | |
3 | 2 | snex 4164 | . . . . . . 7 |
4 | cc2.a | . . . . . . . 8 | |
5 | funfvex 5503 | . . . . . . . . 9 | |
6 | 5 | funfni 5288 | . . . . . . . 8 |
7 | 4, 6 | sylan 281 | . . . . . . 7 |
8 | xpexg 4718 | . . . . . . 7 | |
9 | 3, 7, 8 | sylancr 411 | . . . . . 6 |
10 | cc2lem.a | . . . . . 6 | |
11 | 9, 10 | fmptd 5639 | . . . . 5 |
12 | sneq 3587 | . . . . . . . . . 10 | |
13 | fveq2 5486 | . . . . . . . . . 10 | |
14 | 12, 13 | xpeq12d 4629 | . . . . . . . . 9 |
15 | simprr 522 | . . . . . . . . 9 | |
16 | vex 2729 | . . . . . . . . . . 11 | |
17 | 16 | snex 4164 | . . . . . . . . . 10 |
18 | 4 | adantr 274 | . . . . . . . . . . 11 |
19 | funfvex 5503 | . . . . . . . . . . . 12 | |
20 | 19 | funfni 5288 | . . . . . . . . . . 11 |
21 | 18, 15, 20 | syl2anc 409 | . . . . . . . . . 10 |
22 | xpexg 4718 | . . . . . . . . . 10 | |
23 | 17, 21, 22 | sylancr 411 | . . . . . . . . 9 |
24 | 10, 14, 15, 23 | fvmptd3 5579 | . . . . . . . 8 |
25 | 24 | eqeq2d 2177 | . . . . . . 7 |
26 | simpr 109 | . . . . . . . . . . 11 | |
27 | 10 | fvmpt2 5569 | . . . . . . . . . . 11 |
28 | 26, 9, 27 | syl2anc 409 | . . . . . . . . . 10 |
29 | 28 | adantrr 471 | . . . . . . . . 9 |
30 | 29 | eqeq1d 2174 | . . . . . . . 8 |
31 | 2 | snm 3696 | . . . . . . . . . 10 |
32 | fveq2 5486 | . . . . . . . . . . . . 13 | |
33 | 32 | eleq2d 2236 | . . . . . . . . . . . 12 |
34 | 33 | exbidv 1813 | . . . . . . . . . . 11 |
35 | cc2.m | . . . . . . . . . . . 12 | |
36 | 35 | adantr 274 | . . . . . . . . . . 11 |
37 | simprl 521 | . . . . . . . . . . 11 | |
38 | 34, 36, 37 | rspcdva 2835 | . . . . . . . . . 10 |
39 | xp11m 5042 | . . . . . . . . . 10 | |
40 | 31, 38, 39 | sylancr 411 | . . . . . . . . 9 |
41 | 2 | sneqr 3740 | . . . . . . . . . 10 |
42 | 41 | adantr 274 | . . . . . . . . 9 |
43 | 40, 42 | syl6bi 162 | . . . . . . . 8 |
44 | 30, 43 | sylbid 149 | . . . . . . 7 |
45 | 25, 44 | sylbid 149 | . . . . . 6 |
46 | 45 | ralrimivva 2548 | . . . . 5 |
47 | dff13 5736 | . . . . 5 | |
48 | 11, 46, 47 | sylanbrc 414 | . . . 4 |
49 | f1f1orn 5443 | . . . . 5 | |
50 | omex 4570 | . . . . . 6 | |
51 | 50 | f1oen 6725 | . . . . 5 |
52 | ensym 6747 | . . . . 5 | |
53 | 49, 51, 52 | 3syl 17 | . . . 4 |
54 | 48, 53 | syl 14 | . . 3 |
55 | 9 | ralrimiva 2539 | . . . . . . . . 9 |
56 | 10 | fnmpt 5314 | . . . . . . . . 9 |
57 | 55, 56 | syl 14 | . . . . . . . 8 |
58 | 57 | adantr 274 | . . . . . . 7 |
59 | fnfun 5285 | . . . . . . 7 | |
60 | 58, 59 | syl 14 | . . . . . 6 |
61 | simpr 109 | . . . . . 6 | |
62 | elrnrexdm 5624 | . . . . . 6 | |
63 | 60, 61, 62 | sylc 62 | . . . . 5 |
64 | simpll 519 | . . . . . . 7 | |
65 | simprl 521 | . . . . . . . 8 | |
66 | fndm 5287 | . . . . . . . . 9 | |
67 | 64, 57, 66 | 3syl 17 | . . . . . . . 8 |
68 | 65, 67 | eleqtrd 2245 | . . . . . . 7 |
69 | 35 | adantr 274 | . . . . . . . . . . 11 |
70 | 34, 69, 26 | rspcdva 2835 | . . . . . . . . . 10 |
71 | eleq1 2229 | . . . . . . . . . . 11 | |
72 | 71 | cbvexv 1906 | . . . . . . . . . 10 |
73 | 70, 72 | sylib 121 | . . . . . . . . 9 |
74 | vsnid 3608 | . . . . . . . . . . 11 | |
75 | simpr 109 | . . . . . . . . . . 11 | |
76 | opelxpi 4636 | . . . . . . . . . . 11 | |
77 | 74, 75, 76 | sylancr 411 | . . . . . . . . . 10 |
78 | eleq1 2229 | . . . . . . . . . . 11 | |
79 | 78 | spcegv 2814 | . . . . . . . . . 10 |
80 | 77, 77, 79 | sylc 62 | . . . . . . . . 9 |
81 | 73, 80 | exlimddv 1886 | . . . . . . . 8 |
82 | 28 | eleq2d 2236 | . . . . . . . . 9 |
83 | 82 | exbidv 1813 | . . . . . . . 8 |
84 | 81, 83 | mpbird 166 | . . . . . . 7 |
85 | 64, 68, 84 | syl2anc 409 | . . . . . 6 |
86 | simprr 522 | . . . . . . . 8 | |
87 | 86 | eleq2d 2236 | . . . . . . 7 |
88 | 87 | exbidv 1813 | . . . . . 6 |
89 | 85, 88 | mpbird 166 | . . . . 5 |
90 | 63, 89 | rexlimddv 2588 | . . . 4 |
91 | 90 | ralrimiva 2539 | . . 3 |
92 | 1, 54, 91 | ccfunen 7205 | . 2 |
93 | vex 2729 | . . . . . . . 8 | |
94 | funfvex 5503 | . . . . . . . . . 10 | |
95 | 94 | funfni 5288 | . . . . . . . . 9 |
96 | 57, 95 | sylan 281 | . . . . . . . 8 |
97 | fvexg 5505 | . . . . . . . 8 | |
98 | 93, 96, 97 | sylancr 411 | . . . . . . 7 |
99 | 2ndexg 6136 | . . . . . . 7 | |
100 | 98, 99 | syl 14 | . . . . . 6 |
101 | 100 | ralrimiva 2539 | . . . . 5 |
102 | cc2lem.g | . . . . . 6 | |
103 | 102 | fnmpt 5314 | . . . . 5 |
104 | 101, 103 | syl 14 | . . . 4 |
105 | 104 | adantr 274 | . . 3 |
106 | simpr 109 | . . . . . 6 | |
107 | fveq2 5486 | . . . . . . . . . 10 | |
108 | id 19 | . . . . . . . . . 10 | |
109 | 107, 108 | eleq12d 2237 | . . . . . . . . 9 |
110 | simplrr 526 | . . . . . . . . 9 | |
111 | fnfvelrn 5617 | . . . . . . . . . . 11 | |
112 | 57, 111 | sylan 281 | . . . . . . . . . 10 |
113 | 112 | adantlr 469 | . . . . . . . . 9 |
114 | 109, 110, 113 | rspcdva 2835 | . . . . . . . 8 |
115 | 28 | eleq2d 2236 | . . . . . . . . 9 |
116 | 115 | adantlr 469 | . . . . . . . 8 |
117 | 114, 116 | mpbid 146 | . . . . . . 7 |
118 | xp2nd 6134 | . . . . . . 7 | |
119 | 117, 118 | syl 14 | . . . . . 6 |
120 | 102 | fvmpt2 5569 | . . . . . 6 |
121 | 106, 119, 120 | syl2anc 409 | . . . . 5 |
122 | 121, 119 | eqeltrd 2243 | . . . 4 |
123 | 122 | ralrimiva 2539 | . . 3 |
124 | 50 | a1i 9 | . . . . . 6 |
125 | fnex 5707 | . . . . . 6 | |
126 | 104, 124, 125 | syl2anc 409 | . . . . 5 |
127 | fneq1 5276 | . . . . . . 7 | |
128 | fveq1 5485 | . . . . . . . . 9 | |
129 | 128 | eleq1d 2235 | . . . . . . . 8 |
130 | 129 | ralbidv 2466 | . . . . . . 7 |
131 | 127, 130 | anbi12d 465 | . . . . . 6 |
132 | 131 | spcegv 2814 | . . . . 5 |
133 | 126, 132 | syl 14 | . . . 4 |
134 | 133 | adantr 274 | . . 3 |
135 | 105, 123, 134 | mp2and 430 | . 2 |
136 | 92, 135 | exlimddv 1886 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 cvv 2726 csn 3576 cop 3579 class class class wbr 3982 cmpt 4043 com 4567 cxp 4602 cdm 4604 crn 4605 wfun 5182 wfn 5183 wf 5184 wf1 5185 wf1o 5187 cfv 5188 c2nd 6107 cen 6704 CCHOICEwacc 7203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-2nd 6109 df-er 6501 df-en 6707 df-cc 7204 |
This theorem is referenced by: cc2 7208 |
Copyright terms: Public domain | W3C validator |