| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc2lem | Unicode version | ||
| Description: Lemma for cc2 7379. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| Ref | Expression |
|---|---|
| cc2.cc |
|
| cc2.a |
|
| cc2.m |
|
| cc2lem.a |
|
| cc2lem.g |
|
| Ref | Expression |
|---|---|
| cc2lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc2.cc |
. . 3
| |
| 2 | vex 2775 |
. . . . . . . 8
| |
| 3 | 2 | snex 4229 |
. . . . . . 7
|
| 4 | cc2.a |
. . . . . . . 8
| |
| 5 | funfvex 5593 |
. . . . . . . . 9
| |
| 6 | 5 | funfni 5376 |
. . . . . . . 8
|
| 7 | 4, 6 | sylan 283 |
. . . . . . 7
|
| 8 | xpexg 4789 |
. . . . . . 7
| |
| 9 | 3, 7, 8 | sylancr 414 |
. . . . . 6
|
| 10 | cc2lem.a |
. . . . . 6
| |
| 11 | 9, 10 | fmptd 5734 |
. . . . 5
|
| 12 | sneq 3644 |
. . . . . . . . . 10
| |
| 13 | fveq2 5576 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | xpeq12d 4700 |
. . . . . . . . 9
|
| 15 | simprr 531 |
. . . . . . . . 9
| |
| 16 | vex 2775 |
. . . . . . . . . . 11
| |
| 17 | 16 | snex 4229 |
. . . . . . . . . 10
|
| 18 | 4 | adantr 276 |
. . . . . . . . . . 11
|
| 19 | funfvex 5593 |
. . . . . . . . . . . 12
| |
| 20 | 19 | funfni 5376 |
. . . . . . . . . . 11
|
| 21 | 18, 15, 20 | syl2anc 411 |
. . . . . . . . . 10
|
| 22 | xpexg 4789 |
. . . . . . . . . 10
| |
| 23 | 17, 21, 22 | sylancr 414 |
. . . . . . . . 9
|
| 24 | 10, 14, 15, 23 | fvmptd3 5673 |
. . . . . . . 8
|
| 25 | 24 | eqeq2d 2217 |
. . . . . . 7
|
| 26 | simpr 110 |
. . . . . . . . . . 11
| |
| 27 | 10 | fvmpt2 5663 |
. . . . . . . . . . 11
|
| 28 | 26, 9, 27 | syl2anc 411 |
. . . . . . . . . 10
|
| 29 | 28 | adantrr 479 |
. . . . . . . . 9
|
| 30 | 29 | eqeq1d 2214 |
. . . . . . . 8
|
| 31 | 2 | snm 3753 |
. . . . . . . . . 10
|
| 32 | fveq2 5576 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | eleq2d 2275 |
. . . . . . . . . . . 12
|
| 34 | 33 | exbidv 1848 |
. . . . . . . . . . 11
|
| 35 | cc2.m |
. . . . . . . . . . . 12
| |
| 36 | 35 | adantr 276 |
. . . . . . . . . . 11
|
| 37 | simprl 529 |
. . . . . . . . . . 11
| |
| 38 | 34, 36, 37 | rspcdva 2882 |
. . . . . . . . . 10
|
| 39 | xp11m 5121 |
. . . . . . . . . 10
| |
| 40 | 31, 38, 39 | sylancr 414 |
. . . . . . . . 9
|
| 41 | 2 | sneqr 3801 |
. . . . . . . . . 10
|
| 42 | 41 | adantr 276 |
. . . . . . . . 9
|
| 43 | 40, 42 | biimtrdi 163 |
. . . . . . . 8
|
| 44 | 30, 43 | sylbid 150 |
. . . . . . 7
|
| 45 | 25, 44 | sylbid 150 |
. . . . . 6
|
| 46 | 45 | ralrimivva 2588 |
. . . . 5
|
| 47 | dff13 5837 |
. . . . 5
| |
| 48 | 11, 46, 47 | sylanbrc 417 |
. . . 4
|
| 49 | f1f1orn 5533 |
. . . . 5
| |
| 50 | omex 4641 |
. . . . . 6
| |
| 51 | 50 | f1oen 6850 |
. . . . 5
|
| 52 | ensym 6873 |
. . . . 5
| |
| 53 | 49, 51, 52 | 3syl 17 |
. . . 4
|
| 54 | 48, 53 | syl 14 |
. . 3
|
| 55 | 9 | ralrimiva 2579 |
. . . . . . . . 9
|
| 56 | 10 | fnmpt 5402 |
. . . . . . . . 9
|
| 57 | 55, 56 | syl 14 |
. . . . . . . 8
|
| 58 | 57 | adantr 276 |
. . . . . . 7
|
| 59 | fnfun 5371 |
. . . . . . 7
| |
| 60 | 58, 59 | syl 14 |
. . . . . 6
|
| 61 | simpr 110 |
. . . . . 6
| |
| 62 | elrnrexdm 5719 |
. . . . . 6
| |
| 63 | 60, 61, 62 | sylc 62 |
. . . . 5
|
| 64 | simpll 527 |
. . . . . . 7
| |
| 65 | simprl 529 |
. . . . . . . 8
| |
| 66 | fndm 5373 |
. . . . . . . . 9
| |
| 67 | 64, 57, 66 | 3syl 17 |
. . . . . . . 8
|
| 68 | 65, 67 | eleqtrd 2284 |
. . . . . . 7
|
| 69 | 35 | adantr 276 |
. . . . . . . . . . 11
|
| 70 | 34, 69, 26 | rspcdva 2882 |
. . . . . . . . . 10
|
| 71 | eleq1 2268 |
. . . . . . . . . . 11
| |
| 72 | 71 | cbvexv 1942 |
. . . . . . . . . 10
|
| 73 | 70, 72 | sylib 122 |
. . . . . . . . 9
|
| 74 | vsnid 3665 |
. . . . . . . . . . 11
| |
| 75 | simpr 110 |
. . . . . . . . . . 11
| |
| 76 | opelxpi 4707 |
. . . . . . . . . . 11
| |
| 77 | 74, 75, 76 | sylancr 414 |
. . . . . . . . . 10
|
| 78 | eleq1 2268 |
. . . . . . . . . . 11
| |
| 79 | 78 | spcegv 2861 |
. . . . . . . . . 10
|
| 80 | 77, 77, 79 | sylc 62 |
. . . . . . . . 9
|
| 81 | 73, 80 | exlimddv 1922 |
. . . . . . . 8
|
| 82 | 28 | eleq2d 2275 |
. . . . . . . . 9
|
| 83 | 82 | exbidv 1848 |
. . . . . . . 8
|
| 84 | 81, 83 | mpbird 167 |
. . . . . . 7
|
| 85 | 64, 68, 84 | syl2anc 411 |
. . . . . 6
|
| 86 | simprr 531 |
. . . . . . . 8
| |
| 87 | 86 | eleq2d 2275 |
. . . . . . 7
|
| 88 | 87 | exbidv 1848 |
. . . . . 6
|
| 89 | 85, 88 | mpbird 167 |
. . . . 5
|
| 90 | 63, 89 | rexlimddv 2628 |
. . . 4
|
| 91 | 90 | ralrimiva 2579 |
. . 3
|
| 92 | 1, 54, 91 | ccfunen 7376 |
. 2
|
| 93 | vex 2775 |
. . . . . . . 8
| |
| 94 | funfvex 5593 |
. . . . . . . . . 10
| |
| 95 | 94 | funfni 5376 |
. . . . . . . . 9
|
| 96 | 57, 95 | sylan 283 |
. . . . . . . 8
|
| 97 | fvexg 5595 |
. . . . . . . 8
| |
| 98 | 93, 96, 97 | sylancr 414 |
. . . . . . 7
|
| 99 | 2ndexg 6254 |
. . . . . . 7
| |
| 100 | 98, 99 | syl 14 |
. . . . . 6
|
| 101 | 100 | ralrimiva 2579 |
. . . . 5
|
| 102 | cc2lem.g |
. . . . . 6
| |
| 103 | 102 | fnmpt 5402 |
. . . . 5
|
| 104 | 101, 103 | syl 14 |
. . . 4
|
| 105 | 104 | adantr 276 |
. . 3
|
| 106 | simpr 110 |
. . . . . 6
| |
| 107 | fveq2 5576 |
. . . . . . . . . 10
| |
| 108 | id 19 |
. . . . . . . . . 10
| |
| 109 | 107, 108 | eleq12d 2276 |
. . . . . . . . 9
|
| 110 | simplrr 536 |
. . . . . . . . 9
| |
| 111 | fnfvelrn 5712 |
. . . . . . . . . . 11
| |
| 112 | 57, 111 | sylan 283 |
. . . . . . . . . 10
|
| 113 | 112 | adantlr 477 |
. . . . . . . . 9
|
| 114 | 109, 110, 113 | rspcdva 2882 |
. . . . . . . 8
|
| 115 | 28 | eleq2d 2275 |
. . . . . . . . 9
|
| 116 | 115 | adantlr 477 |
. . . . . . . 8
|
| 117 | 114, 116 | mpbid 147 |
. . . . . . 7
|
| 118 | xp2nd 6252 |
. . . . . . 7
| |
| 119 | 117, 118 | syl 14 |
. . . . . 6
|
| 120 | 102 | fvmpt2 5663 |
. . . . . 6
|
| 121 | 106, 119, 120 | syl2anc 411 |
. . . . 5
|
| 122 | 121, 119 | eqeltrd 2282 |
. . . 4
|
| 123 | 122 | ralrimiva 2579 |
. . 3
|
| 124 | 50 | a1i 9 |
. . . . . 6
|
| 125 | fnex 5806 |
. . . . . 6
| |
| 126 | 104, 124, 125 | syl2anc 411 |
. . . . 5
|
| 127 | fneq1 5362 |
. . . . . . 7
| |
| 128 | fveq1 5575 |
. . . . . . . . 9
| |
| 129 | 128 | eleq1d 2274 |
. . . . . . . 8
|
| 130 | 129 | ralbidv 2506 |
. . . . . . 7
|
| 131 | 127, 130 | anbi12d 473 |
. . . . . 6
|
| 132 | 131 | spcegv 2861 |
. . . . 5
|
| 133 | 126, 132 | syl 14 |
. . . 4
|
| 134 | 133 | adantr 276 |
. . 3
|
| 135 | 105, 123, 134 | mp2and 433 |
. 2
|
| 136 | 92, 135 | exlimddv 1922 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-2nd 6227 df-er 6620 df-en 6828 df-cc 7375 |
| This theorem is referenced by: cc2 7379 |
| Copyright terms: Public domain | W3C validator |