| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc2lem | Unicode version | ||
| Description: Lemma for cc2 7449. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| Ref | Expression |
|---|---|
| cc2.cc |
|
| cc2.a |
|
| cc2.m |
|
| cc2lem.a |
|
| cc2lem.g |
|
| Ref | Expression |
|---|---|
| cc2lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc2.cc |
. . 3
| |
| 2 | vex 2802 |
. . . . . . . 8
| |
| 3 | 2 | snex 4268 |
. . . . . . 7
|
| 4 | cc2.a |
. . . . . . . 8
| |
| 5 | funfvex 5643 |
. . . . . . . . 9
| |
| 6 | 5 | funfni 5422 |
. . . . . . . 8
|
| 7 | 4, 6 | sylan 283 |
. . . . . . 7
|
| 8 | xpexg 4832 |
. . . . . . 7
| |
| 9 | 3, 7, 8 | sylancr 414 |
. . . . . 6
|
| 10 | cc2lem.a |
. . . . . 6
| |
| 11 | 9, 10 | fmptd 5788 |
. . . . 5
|
| 12 | sneq 3677 |
. . . . . . . . . 10
| |
| 13 | fveq2 5626 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | xpeq12d 4743 |
. . . . . . . . 9
|
| 15 | simprr 531 |
. . . . . . . . 9
| |
| 16 | vex 2802 |
. . . . . . . . . . 11
| |
| 17 | 16 | snex 4268 |
. . . . . . . . . 10
|
| 18 | 4 | adantr 276 |
. . . . . . . . . . 11
|
| 19 | funfvex 5643 |
. . . . . . . . . . . 12
| |
| 20 | 19 | funfni 5422 |
. . . . . . . . . . 11
|
| 21 | 18, 15, 20 | syl2anc 411 |
. . . . . . . . . 10
|
| 22 | xpexg 4832 |
. . . . . . . . . 10
| |
| 23 | 17, 21, 22 | sylancr 414 |
. . . . . . . . 9
|
| 24 | 10, 14, 15, 23 | fvmptd3 5727 |
. . . . . . . 8
|
| 25 | 24 | eqeq2d 2241 |
. . . . . . 7
|
| 26 | simpr 110 |
. . . . . . . . . . 11
| |
| 27 | 10 | fvmpt2 5717 |
. . . . . . . . . . 11
|
| 28 | 26, 9, 27 | syl2anc 411 |
. . . . . . . . . 10
|
| 29 | 28 | adantrr 479 |
. . . . . . . . 9
|
| 30 | 29 | eqeq1d 2238 |
. . . . . . . 8
|
| 31 | 2 | snm 3786 |
. . . . . . . . . 10
|
| 32 | fveq2 5626 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | eleq2d 2299 |
. . . . . . . . . . . 12
|
| 34 | 33 | exbidv 1871 |
. . . . . . . . . . 11
|
| 35 | cc2.m |
. . . . . . . . . . . 12
| |
| 36 | 35 | adantr 276 |
. . . . . . . . . . 11
|
| 37 | simprl 529 |
. . . . . . . . . . 11
| |
| 38 | 34, 36, 37 | rspcdva 2912 |
. . . . . . . . . 10
|
| 39 | xp11m 5166 |
. . . . . . . . . 10
| |
| 40 | 31, 38, 39 | sylancr 414 |
. . . . . . . . 9
|
| 41 | 2 | sneqr 3837 |
. . . . . . . . . 10
|
| 42 | 41 | adantr 276 |
. . . . . . . . 9
|
| 43 | 40, 42 | biimtrdi 163 |
. . . . . . . 8
|
| 44 | 30, 43 | sylbid 150 |
. . . . . . 7
|
| 45 | 25, 44 | sylbid 150 |
. . . . . 6
|
| 46 | 45 | ralrimivva 2612 |
. . . . 5
|
| 47 | dff13 5891 |
. . . . 5
| |
| 48 | 11, 46, 47 | sylanbrc 417 |
. . . 4
|
| 49 | f1f1orn 5582 |
. . . . 5
| |
| 50 | omex 4684 |
. . . . . 6
| |
| 51 | 50 | f1oen 6908 |
. . . . 5
|
| 52 | ensym 6931 |
. . . . 5
| |
| 53 | 49, 51, 52 | 3syl 17 |
. . . 4
|
| 54 | 48, 53 | syl 14 |
. . 3
|
| 55 | 9 | ralrimiva 2603 |
. . . . . . . . 9
|
| 56 | 10 | fnmpt 5449 |
. . . . . . . . 9
|
| 57 | 55, 56 | syl 14 |
. . . . . . . 8
|
| 58 | 57 | adantr 276 |
. . . . . . 7
|
| 59 | fnfun 5417 |
. . . . . . 7
| |
| 60 | 58, 59 | syl 14 |
. . . . . 6
|
| 61 | simpr 110 |
. . . . . 6
| |
| 62 | elrnrexdm 5773 |
. . . . . 6
| |
| 63 | 60, 61, 62 | sylc 62 |
. . . . 5
|
| 64 | simpll 527 |
. . . . . . 7
| |
| 65 | simprl 529 |
. . . . . . . 8
| |
| 66 | fndm 5419 |
. . . . . . . . 9
| |
| 67 | 64, 57, 66 | 3syl 17 |
. . . . . . . 8
|
| 68 | 65, 67 | eleqtrd 2308 |
. . . . . . 7
|
| 69 | 35 | adantr 276 |
. . . . . . . . . . 11
|
| 70 | 34, 69, 26 | rspcdva 2912 |
. . . . . . . . . 10
|
| 71 | eleq1 2292 |
. . . . . . . . . . 11
| |
| 72 | 71 | cbvexv 1965 |
. . . . . . . . . 10
|
| 73 | 70, 72 | sylib 122 |
. . . . . . . . 9
|
| 74 | vsnid 3698 |
. . . . . . . . . . 11
| |
| 75 | simpr 110 |
. . . . . . . . . . 11
| |
| 76 | opelxpi 4750 |
. . . . . . . . . . 11
| |
| 77 | 74, 75, 76 | sylancr 414 |
. . . . . . . . . 10
|
| 78 | eleq1 2292 |
. . . . . . . . . . 11
| |
| 79 | 78 | spcegv 2891 |
. . . . . . . . . 10
|
| 80 | 77, 77, 79 | sylc 62 |
. . . . . . . . 9
|
| 81 | 73, 80 | exlimddv 1945 |
. . . . . . . 8
|
| 82 | 28 | eleq2d 2299 |
. . . . . . . . 9
|
| 83 | 82 | exbidv 1871 |
. . . . . . . 8
|
| 84 | 81, 83 | mpbird 167 |
. . . . . . 7
|
| 85 | 64, 68, 84 | syl2anc 411 |
. . . . . 6
|
| 86 | simprr 531 |
. . . . . . . 8
| |
| 87 | 86 | eleq2d 2299 |
. . . . . . 7
|
| 88 | 87 | exbidv 1871 |
. . . . . 6
|
| 89 | 85, 88 | mpbird 167 |
. . . . 5
|
| 90 | 63, 89 | rexlimddv 2653 |
. . . 4
|
| 91 | 90 | ralrimiva 2603 |
. . 3
|
| 92 | 1, 54, 91 | ccfunen 7446 |
. 2
|
| 93 | vex 2802 |
. . . . . . . 8
| |
| 94 | funfvex 5643 |
. . . . . . . . . 10
| |
| 95 | 94 | funfni 5422 |
. . . . . . . . 9
|
| 96 | 57, 95 | sylan 283 |
. . . . . . . 8
|
| 97 | fvexg 5645 |
. . . . . . . 8
| |
| 98 | 93, 96, 97 | sylancr 414 |
. . . . . . 7
|
| 99 | 2ndexg 6312 |
. . . . . . 7
| |
| 100 | 98, 99 | syl 14 |
. . . . . 6
|
| 101 | 100 | ralrimiva 2603 |
. . . . 5
|
| 102 | cc2lem.g |
. . . . . 6
| |
| 103 | 102 | fnmpt 5449 |
. . . . 5
|
| 104 | 101, 103 | syl 14 |
. . . 4
|
| 105 | 104 | adantr 276 |
. . 3
|
| 106 | simpr 110 |
. . . . . 6
| |
| 107 | fveq2 5626 |
. . . . . . . . . 10
| |
| 108 | id 19 |
. . . . . . . . . 10
| |
| 109 | 107, 108 | eleq12d 2300 |
. . . . . . . . 9
|
| 110 | simplrr 536 |
. . . . . . . . 9
| |
| 111 | fnfvelrn 5766 |
. . . . . . . . . . 11
| |
| 112 | 57, 111 | sylan 283 |
. . . . . . . . . 10
|
| 113 | 112 | adantlr 477 |
. . . . . . . . 9
|
| 114 | 109, 110, 113 | rspcdva 2912 |
. . . . . . . 8
|
| 115 | 28 | eleq2d 2299 |
. . . . . . . . 9
|
| 116 | 115 | adantlr 477 |
. . . . . . . 8
|
| 117 | 114, 116 | mpbid 147 |
. . . . . . 7
|
| 118 | xp2nd 6310 |
. . . . . . 7
| |
| 119 | 117, 118 | syl 14 |
. . . . . 6
|
| 120 | 102 | fvmpt2 5717 |
. . . . . 6
|
| 121 | 106, 119, 120 | syl2anc 411 |
. . . . 5
|
| 122 | 121, 119 | eqeltrd 2306 |
. . . 4
|
| 123 | 122 | ralrimiva 2603 |
. . 3
|
| 124 | 50 | a1i 9 |
. . . . . 6
|
| 125 | fnex 5860 |
. . . . . 6
| |
| 126 | 104, 124, 125 | syl2anc 411 |
. . . . 5
|
| 127 | fneq1 5408 |
. . . . . . 7
| |
| 128 | fveq1 5625 |
. . . . . . . . 9
| |
| 129 | 128 | eleq1d 2298 |
. . . . . . . 8
|
| 130 | 129 | ralbidv 2530 |
. . . . . . 7
|
| 131 | 127, 130 | anbi12d 473 |
. . . . . 6
|
| 132 | 131 | spcegv 2891 |
. . . . 5
|
| 133 | 126, 132 | syl 14 |
. . . 4
|
| 134 | 133 | adantr 276 |
. . 3
|
| 135 | 105, 123, 134 | mp2and 433 |
. 2
|
| 136 | 92, 135 | exlimddv 1945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-2nd 6285 df-er 6678 df-en 6886 df-cc 7445 |
| This theorem is referenced by: cc2 7449 |
| Copyright terms: Public domain | W3C validator |