Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc2lem | Unicode version |
Description: Lemma for cc2 7216. (Contributed by Jim Kingdon, 27-Apr-2024.) |
Ref | Expression |
---|---|
cc2.cc | CCHOICE |
cc2.a | |
cc2.m | |
cc2lem.a | |
cc2lem.g |
Ref | Expression |
---|---|
cc2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc2.cc | . . 3 CCHOICE | |
2 | vex 2733 | . . . . . . . 8 | |
3 | 2 | snex 4169 | . . . . . . 7 |
4 | cc2.a | . . . . . . . 8 | |
5 | funfvex 5511 | . . . . . . . . 9 | |
6 | 5 | funfni 5296 | . . . . . . . 8 |
7 | 4, 6 | sylan 281 | . . . . . . 7 |
8 | xpexg 4723 | . . . . . . 7 | |
9 | 3, 7, 8 | sylancr 412 | . . . . . 6 |
10 | cc2lem.a | . . . . . 6 | |
11 | 9, 10 | fmptd 5647 | . . . . 5 |
12 | sneq 3592 | . . . . . . . . . 10 | |
13 | fveq2 5494 | . . . . . . . . . 10 | |
14 | 12, 13 | xpeq12d 4634 | . . . . . . . . 9 |
15 | simprr 527 | . . . . . . . . 9 | |
16 | vex 2733 | . . . . . . . . . . 11 | |
17 | 16 | snex 4169 | . . . . . . . . . 10 |
18 | 4 | adantr 274 | . . . . . . . . . . 11 |
19 | funfvex 5511 | . . . . . . . . . . . 12 | |
20 | 19 | funfni 5296 | . . . . . . . . . . 11 |
21 | 18, 15, 20 | syl2anc 409 | . . . . . . . . . 10 |
22 | xpexg 4723 | . . . . . . . . . 10 | |
23 | 17, 21, 22 | sylancr 412 | . . . . . . . . 9 |
24 | 10, 14, 15, 23 | fvmptd3 5587 | . . . . . . . 8 |
25 | 24 | eqeq2d 2182 | . . . . . . 7 |
26 | simpr 109 | . . . . . . . . . . 11 | |
27 | 10 | fvmpt2 5577 | . . . . . . . . . . 11 |
28 | 26, 9, 27 | syl2anc 409 | . . . . . . . . . 10 |
29 | 28 | adantrr 476 | . . . . . . . . 9 |
30 | 29 | eqeq1d 2179 | . . . . . . . 8 |
31 | 2 | snm 3701 | . . . . . . . . . 10 |
32 | fveq2 5494 | . . . . . . . . . . . . 13 | |
33 | 32 | eleq2d 2240 | . . . . . . . . . . . 12 |
34 | 33 | exbidv 1818 | . . . . . . . . . . 11 |
35 | cc2.m | . . . . . . . . . . . 12 | |
36 | 35 | adantr 274 | . . . . . . . . . . 11 |
37 | simprl 526 | . . . . . . . . . . 11 | |
38 | 34, 36, 37 | rspcdva 2839 | . . . . . . . . . 10 |
39 | xp11m 5047 | . . . . . . . . . 10 | |
40 | 31, 38, 39 | sylancr 412 | . . . . . . . . 9 |
41 | 2 | sneqr 3745 | . . . . . . . . . 10 |
42 | 41 | adantr 274 | . . . . . . . . 9 |
43 | 40, 42 | syl6bi 162 | . . . . . . . 8 |
44 | 30, 43 | sylbid 149 | . . . . . . 7 |
45 | 25, 44 | sylbid 149 | . . . . . 6 |
46 | 45 | ralrimivva 2552 | . . . . 5 |
47 | dff13 5744 | . . . . 5 | |
48 | 11, 46, 47 | sylanbrc 415 | . . . 4 |
49 | f1f1orn 5451 | . . . . 5 | |
50 | omex 4575 | . . . . . 6 | |
51 | 50 | f1oen 6733 | . . . . 5 |
52 | ensym 6755 | . . . . 5 | |
53 | 49, 51, 52 | 3syl 17 | . . . 4 |
54 | 48, 53 | syl 14 | . . 3 |
55 | 9 | ralrimiva 2543 | . . . . . . . . 9 |
56 | 10 | fnmpt 5322 | . . . . . . . . 9 |
57 | 55, 56 | syl 14 | . . . . . . . 8 |
58 | 57 | adantr 274 | . . . . . . 7 |
59 | fnfun 5293 | . . . . . . 7 | |
60 | 58, 59 | syl 14 | . . . . . 6 |
61 | simpr 109 | . . . . . 6 | |
62 | elrnrexdm 5632 | . . . . . 6 | |
63 | 60, 61, 62 | sylc 62 | . . . . 5 |
64 | simpll 524 | . . . . . . 7 | |
65 | simprl 526 | . . . . . . . 8 | |
66 | fndm 5295 | . . . . . . . . 9 | |
67 | 64, 57, 66 | 3syl 17 | . . . . . . . 8 |
68 | 65, 67 | eleqtrd 2249 | . . . . . . 7 |
69 | 35 | adantr 274 | . . . . . . . . . . 11 |
70 | 34, 69, 26 | rspcdva 2839 | . . . . . . . . . 10 |
71 | eleq1 2233 | . . . . . . . . . . 11 | |
72 | 71 | cbvexv 1911 | . . . . . . . . . 10 |
73 | 70, 72 | sylib 121 | . . . . . . . . 9 |
74 | vsnid 3613 | . . . . . . . . . . 11 | |
75 | simpr 109 | . . . . . . . . . . 11 | |
76 | opelxpi 4641 | . . . . . . . . . . 11 | |
77 | 74, 75, 76 | sylancr 412 | . . . . . . . . . 10 |
78 | eleq1 2233 | . . . . . . . . . . 11 | |
79 | 78 | spcegv 2818 | . . . . . . . . . 10 |
80 | 77, 77, 79 | sylc 62 | . . . . . . . . 9 |
81 | 73, 80 | exlimddv 1891 | . . . . . . . 8 |
82 | 28 | eleq2d 2240 | . . . . . . . . 9 |
83 | 82 | exbidv 1818 | . . . . . . . 8 |
84 | 81, 83 | mpbird 166 | . . . . . . 7 |
85 | 64, 68, 84 | syl2anc 409 | . . . . . 6 |
86 | simprr 527 | . . . . . . . 8 | |
87 | 86 | eleq2d 2240 | . . . . . . 7 |
88 | 87 | exbidv 1818 | . . . . . 6 |
89 | 85, 88 | mpbird 166 | . . . . 5 |
90 | 63, 89 | rexlimddv 2592 | . . . 4 |
91 | 90 | ralrimiva 2543 | . . 3 |
92 | 1, 54, 91 | ccfunen 7213 | . 2 |
93 | vex 2733 | . . . . . . . 8 | |
94 | funfvex 5511 | . . . . . . . . . 10 | |
95 | 94 | funfni 5296 | . . . . . . . . 9 |
96 | 57, 95 | sylan 281 | . . . . . . . 8 |
97 | fvexg 5513 | . . . . . . . 8 | |
98 | 93, 96, 97 | sylancr 412 | . . . . . . 7 |
99 | 2ndexg 6144 | . . . . . . 7 | |
100 | 98, 99 | syl 14 | . . . . . 6 |
101 | 100 | ralrimiva 2543 | . . . . 5 |
102 | cc2lem.g | . . . . . 6 | |
103 | 102 | fnmpt 5322 | . . . . 5 |
104 | 101, 103 | syl 14 | . . . 4 |
105 | 104 | adantr 274 | . . 3 |
106 | simpr 109 | . . . . . 6 | |
107 | fveq2 5494 | . . . . . . . . . 10 | |
108 | id 19 | . . . . . . . . . 10 | |
109 | 107, 108 | eleq12d 2241 | . . . . . . . . 9 |
110 | simplrr 531 | . . . . . . . . 9 | |
111 | fnfvelrn 5625 | . . . . . . . . . . 11 | |
112 | 57, 111 | sylan 281 | . . . . . . . . . 10 |
113 | 112 | adantlr 474 | . . . . . . . . 9 |
114 | 109, 110, 113 | rspcdva 2839 | . . . . . . . 8 |
115 | 28 | eleq2d 2240 | . . . . . . . . 9 |
116 | 115 | adantlr 474 | . . . . . . . 8 |
117 | 114, 116 | mpbid 146 | . . . . . . 7 |
118 | xp2nd 6142 | . . . . . . 7 | |
119 | 117, 118 | syl 14 | . . . . . 6 |
120 | 102 | fvmpt2 5577 | . . . . . 6 |
121 | 106, 119, 120 | syl2anc 409 | . . . . 5 |
122 | 121, 119 | eqeltrd 2247 | . . . 4 |
123 | 122 | ralrimiva 2543 | . . 3 |
124 | 50 | a1i 9 | . . . . . 6 |
125 | fnex 5715 | . . . . . 6 | |
126 | 104, 124, 125 | syl2anc 409 | . . . . 5 |
127 | fneq1 5284 | . . . . . . 7 | |
128 | fveq1 5493 | . . . . . . . . 9 | |
129 | 128 | eleq1d 2239 | . . . . . . . 8 |
130 | 129 | ralbidv 2470 | . . . . . . 7 |
131 | 127, 130 | anbi12d 470 | . . . . . 6 |
132 | 131 | spcegv 2818 | . . . . 5 |
133 | 126, 132 | syl 14 | . . . 4 |
134 | 133 | adantr 274 | . . 3 |
135 | 105, 123, 134 | mp2and 431 | . 2 |
136 | 92, 135 | exlimddv 1891 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 cvv 2730 csn 3581 cop 3584 class class class wbr 3987 cmpt 4048 com 4572 cxp 4607 cdm 4609 crn 4610 wfun 5190 wfn 5191 wf 5192 wf1 5193 wf1o 5195 cfv 5196 c2nd 6115 cen 6712 CCHOICEwacc 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-2nd 6117 df-er 6509 df-en 6715 df-cc 7212 |
This theorem is referenced by: cc2 7216 |
Copyright terms: Public domain | W3C validator |