Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc2lem | Unicode version |
Description: Lemma for cc2 7229. (Contributed by Jim Kingdon, 27-Apr-2024.) |
Ref | Expression |
---|---|
cc2.cc | CCHOICE |
cc2.a | |
cc2.m | |
cc2lem.a | |
cc2lem.g |
Ref | Expression |
---|---|
cc2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc2.cc | . . 3 CCHOICE | |
2 | vex 2733 | . . . . . . . 8 | |
3 | 2 | snex 4171 | . . . . . . 7 |
4 | cc2.a | . . . . . . . 8 | |
5 | funfvex 5513 | . . . . . . . . 9 | |
6 | 5 | funfni 5298 | . . . . . . . 8 |
7 | 4, 6 | sylan 281 | . . . . . . 7 |
8 | xpexg 4725 | . . . . . . 7 | |
9 | 3, 7, 8 | sylancr 412 | . . . . . 6 |
10 | cc2lem.a | . . . . . 6 | |
11 | 9, 10 | fmptd 5650 | . . . . 5 |
12 | sneq 3594 | . . . . . . . . . 10 | |
13 | fveq2 5496 | . . . . . . . . . 10 | |
14 | 12, 13 | xpeq12d 4636 | . . . . . . . . 9 |
15 | simprr 527 | . . . . . . . . 9 | |
16 | vex 2733 | . . . . . . . . . . 11 | |
17 | 16 | snex 4171 | . . . . . . . . . 10 |
18 | 4 | adantr 274 | . . . . . . . . . . 11 |
19 | funfvex 5513 | . . . . . . . . . . . 12 | |
20 | 19 | funfni 5298 | . . . . . . . . . . 11 |
21 | 18, 15, 20 | syl2anc 409 | . . . . . . . . . 10 |
22 | xpexg 4725 | . . . . . . . . . 10 | |
23 | 17, 21, 22 | sylancr 412 | . . . . . . . . 9 |
24 | 10, 14, 15, 23 | fvmptd3 5589 | . . . . . . . 8 |
25 | 24 | eqeq2d 2182 | . . . . . . 7 |
26 | simpr 109 | . . . . . . . . . . 11 | |
27 | 10 | fvmpt2 5579 | . . . . . . . . . . 11 |
28 | 26, 9, 27 | syl2anc 409 | . . . . . . . . . 10 |
29 | 28 | adantrr 476 | . . . . . . . . 9 |
30 | 29 | eqeq1d 2179 | . . . . . . . 8 |
31 | 2 | snm 3703 | . . . . . . . . . 10 |
32 | fveq2 5496 | . . . . . . . . . . . . 13 | |
33 | 32 | eleq2d 2240 | . . . . . . . . . . . 12 |
34 | 33 | exbidv 1818 | . . . . . . . . . . 11 |
35 | cc2.m | . . . . . . . . . . . 12 | |
36 | 35 | adantr 274 | . . . . . . . . . . 11 |
37 | simprl 526 | . . . . . . . . . . 11 | |
38 | 34, 36, 37 | rspcdva 2839 | . . . . . . . . . 10 |
39 | xp11m 5049 | . . . . . . . . . 10 | |
40 | 31, 38, 39 | sylancr 412 | . . . . . . . . 9 |
41 | 2 | sneqr 3747 | . . . . . . . . . 10 |
42 | 41 | adantr 274 | . . . . . . . . 9 |
43 | 40, 42 | syl6bi 162 | . . . . . . . 8 |
44 | 30, 43 | sylbid 149 | . . . . . . 7 |
45 | 25, 44 | sylbid 149 | . . . . . 6 |
46 | 45 | ralrimivva 2552 | . . . . 5 |
47 | dff13 5747 | . . . . 5 | |
48 | 11, 46, 47 | sylanbrc 415 | . . . 4 |
49 | f1f1orn 5453 | . . . . 5 | |
50 | omex 4577 | . . . . . 6 | |
51 | 50 | f1oen 6737 | . . . . 5 |
52 | ensym 6759 | . . . . 5 | |
53 | 49, 51, 52 | 3syl 17 | . . . 4 |
54 | 48, 53 | syl 14 | . . 3 |
55 | 9 | ralrimiva 2543 | . . . . . . . . 9 |
56 | 10 | fnmpt 5324 | . . . . . . . . 9 |
57 | 55, 56 | syl 14 | . . . . . . . 8 |
58 | 57 | adantr 274 | . . . . . . 7 |
59 | fnfun 5295 | . . . . . . 7 | |
60 | 58, 59 | syl 14 | . . . . . 6 |
61 | simpr 109 | . . . . . 6 | |
62 | elrnrexdm 5635 | . . . . . 6 | |
63 | 60, 61, 62 | sylc 62 | . . . . 5 |
64 | simpll 524 | . . . . . . 7 | |
65 | simprl 526 | . . . . . . . 8 | |
66 | fndm 5297 | . . . . . . . . 9 | |
67 | 64, 57, 66 | 3syl 17 | . . . . . . . 8 |
68 | 65, 67 | eleqtrd 2249 | . . . . . . 7 |
69 | 35 | adantr 274 | . . . . . . . . . . 11 |
70 | 34, 69, 26 | rspcdva 2839 | . . . . . . . . . 10 |
71 | eleq1 2233 | . . . . . . . . . . 11 | |
72 | 71 | cbvexv 1911 | . . . . . . . . . 10 |
73 | 70, 72 | sylib 121 | . . . . . . . . 9 |
74 | vsnid 3615 | . . . . . . . . . . 11 | |
75 | simpr 109 | . . . . . . . . . . 11 | |
76 | opelxpi 4643 | . . . . . . . . . . 11 | |
77 | 74, 75, 76 | sylancr 412 | . . . . . . . . . 10 |
78 | eleq1 2233 | . . . . . . . . . . 11 | |
79 | 78 | spcegv 2818 | . . . . . . . . . 10 |
80 | 77, 77, 79 | sylc 62 | . . . . . . . . 9 |
81 | 73, 80 | exlimddv 1891 | . . . . . . . 8 |
82 | 28 | eleq2d 2240 | . . . . . . . . 9 |
83 | 82 | exbidv 1818 | . . . . . . . 8 |
84 | 81, 83 | mpbird 166 | . . . . . . 7 |
85 | 64, 68, 84 | syl2anc 409 | . . . . . 6 |
86 | simprr 527 | . . . . . . . 8 | |
87 | 86 | eleq2d 2240 | . . . . . . 7 |
88 | 87 | exbidv 1818 | . . . . . 6 |
89 | 85, 88 | mpbird 166 | . . . . 5 |
90 | 63, 89 | rexlimddv 2592 | . . . 4 |
91 | 90 | ralrimiva 2543 | . . 3 |
92 | 1, 54, 91 | ccfunen 7226 | . 2 |
93 | vex 2733 | . . . . . . . 8 | |
94 | funfvex 5513 | . . . . . . . . . 10 | |
95 | 94 | funfni 5298 | . . . . . . . . 9 |
96 | 57, 95 | sylan 281 | . . . . . . . 8 |
97 | fvexg 5515 | . . . . . . . 8 | |
98 | 93, 96, 97 | sylancr 412 | . . . . . . 7 |
99 | 2ndexg 6147 | . . . . . . 7 | |
100 | 98, 99 | syl 14 | . . . . . 6 |
101 | 100 | ralrimiva 2543 | . . . . 5 |
102 | cc2lem.g | . . . . . 6 | |
103 | 102 | fnmpt 5324 | . . . . 5 |
104 | 101, 103 | syl 14 | . . . 4 |
105 | 104 | adantr 274 | . . 3 |
106 | simpr 109 | . . . . . 6 | |
107 | fveq2 5496 | . . . . . . . . . 10 | |
108 | id 19 | . . . . . . . . . 10 | |
109 | 107, 108 | eleq12d 2241 | . . . . . . . . 9 |
110 | simplrr 531 | . . . . . . . . 9 | |
111 | fnfvelrn 5628 | . . . . . . . . . . 11 | |
112 | 57, 111 | sylan 281 | . . . . . . . . . 10 |
113 | 112 | adantlr 474 | . . . . . . . . 9 |
114 | 109, 110, 113 | rspcdva 2839 | . . . . . . . 8 |
115 | 28 | eleq2d 2240 | . . . . . . . . 9 |
116 | 115 | adantlr 474 | . . . . . . . 8 |
117 | 114, 116 | mpbid 146 | . . . . . . 7 |
118 | xp2nd 6145 | . . . . . . 7 | |
119 | 117, 118 | syl 14 | . . . . . 6 |
120 | 102 | fvmpt2 5579 | . . . . . 6 |
121 | 106, 119, 120 | syl2anc 409 | . . . . 5 |
122 | 121, 119 | eqeltrd 2247 | . . . 4 |
123 | 122 | ralrimiva 2543 | . . 3 |
124 | 50 | a1i 9 | . . . . . 6 |
125 | fnex 5718 | . . . . . 6 | |
126 | 104, 124, 125 | syl2anc 409 | . . . . 5 |
127 | fneq1 5286 | . . . . . . 7 | |
128 | fveq1 5495 | . . . . . . . . 9 | |
129 | 128 | eleq1d 2239 | . . . . . . . 8 |
130 | 129 | ralbidv 2470 | . . . . . . 7 |
131 | 127, 130 | anbi12d 470 | . . . . . 6 |
132 | 131 | spcegv 2818 | . . . . 5 |
133 | 126, 132 | syl 14 | . . . 4 |
134 | 133 | adantr 274 | . . 3 |
135 | 105, 123, 134 | mp2and 431 | . 2 |
136 | 92, 135 | exlimddv 1891 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 cvv 2730 csn 3583 cop 3586 class class class wbr 3989 cmpt 4050 com 4574 cxp 4609 cdm 4611 crn 4612 wfun 5192 wfn 5193 wf 5194 wf1 5195 wf1o 5197 cfv 5198 c2nd 6118 cen 6716 CCHOICEwacc 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-2nd 6120 df-er 6513 df-en 6719 df-cc 7225 |
This theorem is referenced by: cc2 7229 |
Copyright terms: Public domain | W3C validator |