ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snmb Unicode version

Theorem snmb 3767
Description: A singleton is inhabited iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.) (Revised by Jim Kingdon, 29-Dec-2025.)
Assertion
Ref Expression
snmb  |-  ( A  e.  _V  <->  E. x  x  e.  { A } )
Distinct variable group:    x, A

Proof of Theorem snmb
StepHypRef Expression
1 isset 2786 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
2 velsn 3663 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
32exbii 1631 . 2  |-  ( E. x  x  e.  { A }  <->  E. x  x  =  A )
41, 3bitr4i 187 1  |-  ( A  e.  _V  <->  E. x  x  e.  { A } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1375   E.wex 1518    e. wcel 2180   _Vcvv 2779   {csn 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-sn 3652
This theorem is referenced by:  lpvtx  15844
  Copyright terms: Public domain W3C validator