| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snmb | GIF version | ||
| Description: A singleton is inhabited iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.) (Revised by Jim Kingdon, 29-Dec-2025.) |
| Ref | Expression |
|---|---|
| snmb | ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 ∈ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 2779 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 2 | velsn 3651 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | 2 | exbii 1629 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 ∈ {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 {csn 3634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sn 3640 |
| This theorem is referenced by: lpvtx 15719 |
| Copyright terms: Public domain | W3C validator |