ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snmb GIF version

Theorem snmb 3755
Description: A singleton is inhabited iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.) (Revised by Jim Kingdon, 29-Dec-2025.)
Assertion
Ref Expression
snmb (𝐴 ∈ V ↔ ∃𝑥 𝑥 ∈ {𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem snmb
StepHypRef Expression
1 isset 2779 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
2 velsn 3651 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32exbii 1629 . 2 (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴)
41, 3bitr4i 187 1 (𝐴 ∈ V ↔ ∃𝑥 𝑥 ∈ {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  {csn 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sn 3640
This theorem is referenced by:  lpvtx  15719
  Copyright terms: Public domain W3C validator