ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lpvtx Unicode version

Theorem lpvtx 15887
Description: The endpoints of a loop (which is an edge at index  J) are two (identical) vertices  A. (Contributed by AV, 1-Feb-2021.)
Hypothesis
Ref Expression
lpvtx.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
lpvtx  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  A  e.  (Vtx
`  G ) )

Proof of Theorem lpvtx
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 simp1 1021 . . . 4  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  G  e. UHGraph )
2 lpvtx.i . . . . . . 7  |-  I  =  (iEdg `  G )
32uhgrfun 15885 . . . . . 6  |-  ( G  e. UHGraph  ->  Fun  I )
43funfnd 5349 . . . . 5  |-  ( G  e. UHGraph  ->  I  Fn  dom  I )
543ad2ant1 1042 . . . 4  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  I  Fn  dom  I )
6 simp2 1022 . . . 4  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  J  e.  dom  I )
72uhgrm 15886 . . . 4  |-  ( ( G  e. UHGraph  /\  I  Fn 
dom  I  /\  J  e.  dom  I )  ->  E. j  j  e.  ( I `  J
) )
81, 5, 6, 7syl3anc 1271 . . 3  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  E. j  j  e.  ( I `  J
) )
9 eleq2 2293 . . . . 5  |-  ( ( I `  J )  =  { A }  ->  ( j  e.  ( I `  J )  <-> 
j  e.  { A } ) )
109exbidv 1871 . . . 4  |-  ( ( I `  J )  =  { A }  ->  ( E. j  j  e.  ( I `  J )  <->  E. j 
j  e.  { A } ) )
11103ad2ant3 1044 . . 3  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  ( E. j 
j  e.  ( I `
 J )  <->  E. j 
j  e.  { A } ) )
128, 11mpbid 147 . 2  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  E. j  j  e. 
{ A } )
13 eqid 2229 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
1413, 2uhgrss 15883 . . . . 5  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I )  -> 
( I `  J
)  C_  (Vtx `  G
) )
15143adant3 1041 . . . 4  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  ( I `  J )  C_  (Vtx `  G ) )
16 sseq1 3247 . . . . 5  |-  ( ( I `  J )  =  { A }  ->  ( ( I `  J )  C_  (Vtx `  G )  <->  { A }  C_  (Vtx `  G
) ) )
17163ad2ant3 1044 . . . 4  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  ( ( I `
 J )  C_  (Vtx `  G )  <->  { A }  C_  (Vtx `  G
) ) )
1815, 17mpbid 147 . . 3  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  { A }  C_  (Vtx `  G )
)
19 snmb 3788 . . . 4  |-  ( A  e.  _V  <->  E. j 
j  e.  { A } )
20 snssg 3802 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  (Vtx `  G
)  <->  { A }  C_  (Vtx `  G ) ) )
2119, 20sylbir 135 . . 3  |-  ( E. j  j  e.  { A }  ->  ( A  e.  (Vtx `  G
)  <->  { A }  C_  (Vtx `  G ) ) )
2218, 21syl5ibrcom 157 . 2  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  ( E. j 
j  e.  { A }  ->  A  e.  (Vtx
`  G ) ) )
2312, 22mpd 13 1  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  A  e.  (Vtx
`  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666   dom cdm 4719    Fn wfn 5313   ` cfv 5318  Vtxcvtx 15821  iEdgciedg 15822  UHGraphcuhgr 15875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-uhgrm 15877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator