ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lpvtx Unicode version

Theorem lpvtx 15844
Description: The endpoints of a loop (which is an edge at index  J) are two (identical) vertices  A. (Contributed by AV, 1-Feb-2021.)
Hypothesis
Ref Expression
lpvtx.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
lpvtx  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  A  e.  (Vtx
`  G ) )

Proof of Theorem lpvtx
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 simp1 1002 . . . 4  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  G  e. UHGraph )
2 lpvtx.i . . . . . . 7  |-  I  =  (iEdg `  G )
32uhgrfun 15842 . . . . . 6  |-  ( G  e. UHGraph  ->  Fun  I )
43funfnd 5325 . . . . 5  |-  ( G  e. UHGraph  ->  I  Fn  dom  I )
543ad2ant1 1023 . . . 4  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  I  Fn  dom  I )
6 simp2 1003 . . . 4  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  J  e.  dom  I )
72uhgrm 15843 . . . 4  |-  ( ( G  e. UHGraph  /\  I  Fn 
dom  I  /\  J  e.  dom  I )  ->  E. j  j  e.  ( I `  J
) )
81, 5, 6, 7syl3anc 1252 . . 3  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  E. j  j  e.  ( I `  J
) )
9 eleq2 2273 . . . . 5  |-  ( ( I `  J )  =  { A }  ->  ( j  e.  ( I `  J )  <-> 
j  e.  { A } ) )
109exbidv 1851 . . . 4  |-  ( ( I `  J )  =  { A }  ->  ( E. j  j  e.  ( I `  J )  <->  E. j 
j  e.  { A } ) )
11103ad2ant3 1025 . . 3  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  ( E. j 
j  e.  ( I `
 J )  <->  E. j 
j  e.  { A } ) )
128, 11mpbid 147 . 2  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  E. j  j  e. 
{ A } )
13 eqid 2209 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
1413, 2uhgrss 15840 . . . . 5  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I )  -> 
( I `  J
)  C_  (Vtx `  G
) )
15143adant3 1022 . . . 4  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  ( I `  J )  C_  (Vtx `  G ) )
16 sseq1 3227 . . . . 5  |-  ( ( I `  J )  =  { A }  ->  ( ( I `  J )  C_  (Vtx `  G )  <->  { A }  C_  (Vtx `  G
) ) )
17163ad2ant3 1025 . . . 4  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  ( ( I `
 J )  C_  (Vtx `  G )  <->  { A }  C_  (Vtx `  G
) ) )
1815, 17mpbid 147 . . 3  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  { A }  C_  (Vtx `  G )
)
19 snmb 3767 . . . 4  |-  ( A  e.  _V  <->  E. j 
j  e.  { A } )
20 snssg 3781 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  (Vtx `  G
)  <->  { A }  C_  (Vtx `  G ) ) )
2119, 20sylbir 135 . . 3  |-  ( E. j  j  e.  { A }  ->  ( A  e.  (Vtx `  G
)  <->  { A }  C_  (Vtx `  G ) ) )
2218, 21syl5ibrcom 157 . 2  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  ( E. j 
j  e.  { A }  ->  A  e.  (Vtx
`  G ) ) )
2312, 22mpd 13 1  |-  ( ( G  e. UHGraph  /\  J  e. 
dom  I  /\  (
I `  J )  =  { A } )  ->  A  e.  (Vtx
`  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 983    = wceq 1375   E.wex 1518    e. wcel 2180   _Vcvv 2779    C_ wss 3177   {csn 3646   dom cdm 4696    Fn wfn 5289   ` cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  UHGraphcuhgr 15832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fo 5300  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-uhgrm 15834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator