ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snm Unicode version

Theorem snm 3787
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
Hypothesis
Ref Expression
snnz.1  |-  A  e. 
_V
Assertion
Ref Expression
snm  |-  E. x  x  e.  { A }
Distinct variable group:    x, A

Proof of Theorem snm
StepHypRef Expression
1 snnz.1 . 2  |-  A  e. 
_V
2 snmg 3785 . 2  |-  ( A  e.  _V  ->  E. x  x  e.  { A } )
31, 2ax-mp 5 1  |-  E. x  x  e.  { A }
Colors of variables: wff set class
Syntax hints:   E.wex 1538    e. wcel 2200   _Vcvv 2799   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sn 3672
This theorem is referenced by:  mss  4312  ssfilem  7037  diffitest  7049  djuexb  7211  exmidonfinlem  7371  exmidfodomrlemim  7379  cc2lem  7452
  Copyright terms: Public domain W3C validator