ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsssn GIF version

Theorem snsssn 3810
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
snsssn ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)

Proof of Theorem snsssn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssalel 3185 . . 3 ({𝐴} ⊆ {𝐵} ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}))
2 velsn 3655 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 velsn 3655 . . . . 5 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
42, 3imbi12i 239 . . . 4 ((𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴𝑥 = 𝐵))
54albii 1494 . . 3 (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}) ↔ ∀𝑥(𝑥 = 𝐴𝑥 = 𝐵))
61, 5bitri 184 . 2 ({𝐴} ⊆ {𝐵} ↔ ∀𝑥(𝑥 = 𝐴𝑥 = 𝐵))
7 sneqr.1 . . 3 𝐴 ∈ V
8 sbceqal 3058 . . 3 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
97, 8ax-mp 5 . 2 (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵)
106, 9sylbi 121 1 ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371   = wceq 1373  wcel 2177  Vcvv 2773  wss 3170  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3003  df-in 3176  df-ss 3183  df-sn 3644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator