![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snsssn | GIF version |
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) |
Ref | Expression |
---|---|
sneqr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snsssn | ⊢ ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3168 | . . 3 ⊢ ({𝐴} ⊆ {𝐵} ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵})) | |
2 | velsn 3635 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | velsn 3635 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
4 | 2, 3 | imbi12i 239 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴 → 𝑥 = 𝐵)) |
5 | 4 | albii 1481 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵)) |
6 | 1, 5 | bitri 184 | . 2 ⊢ ({𝐴} ⊆ {𝐵} ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵)) |
7 | sneqr.1 | . . 3 ⊢ 𝐴 ∈ V | |
8 | sbceqal 3041 | . . 3 ⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵) |
10 | 6, 9 | sylbi 121 | 1 ⊢ ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sbc 2986 df-in 3159 df-ss 3166 df-sn 3624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |