| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snsssn | GIF version | ||
| Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) |
| Ref | Expression |
|---|---|
| sneqr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snsssn | ⊢ ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3181 | . . 3 ⊢ ({𝐴} ⊆ {𝐵} ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵})) | |
| 2 | velsn 3650 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | velsn 3650 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 4 | 2, 3 | imbi12i 239 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴 → 𝑥 = 𝐵)) |
| 5 | 4 | albii 1493 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵)) |
| 6 | 1, 5 | bitri 184 | . 2 ⊢ ({𝐴} ⊆ {𝐵} ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵)) |
| 7 | sneqr.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 8 | sbceqal 3054 | . . 3 ⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵) |
| 10 | 6, 9 | sylbi 121 | 1 ⊢ ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sbc 2999 df-in 3172 df-ss 3179 df-sn 3639 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |