![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snsssn | GIF version |
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) |
Ref | Expression |
---|---|
sneqr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snsssn | ⊢ ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3052 | . . 3 ⊢ ({𝐴} ⊆ {𝐵} ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵})) | |
2 | velsn 3510 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | velsn 3510 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
4 | 2, 3 | imbi12i 238 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴 → 𝑥 = 𝐵)) |
5 | 4 | albii 1429 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵)) |
6 | 1, 5 | bitri 183 | . 2 ⊢ ({𝐴} ⊆ {𝐵} ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵)) |
7 | sneqr.1 | . . 3 ⊢ 𝐴 ∈ V | |
8 | sbceqal 2932 | . . 3 ⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | |
9 | 7, 8 | ax-mp 7 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵) |
10 | 6, 9 | sylbi 120 | 1 ⊢ ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1312 = wceq 1314 ∈ wcel 1463 Vcvv 2657 ⊆ wss 3037 {csn 3493 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-sbc 2879 df-in 3043 df-ss 3050 df-sn 3499 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |