ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsssn GIF version

Theorem snsssn 3802
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
snsssn ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)

Proof of Theorem snsssn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssalel 3181 . . 3 ({𝐴} ⊆ {𝐵} ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}))
2 velsn 3650 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 velsn 3650 . . . . 5 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
42, 3imbi12i 239 . . . 4 ((𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴𝑥 = 𝐵))
54albii 1493 . . 3 (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐵}) ↔ ∀𝑥(𝑥 = 𝐴𝑥 = 𝐵))
61, 5bitri 184 . 2 ({𝐴} ⊆ {𝐵} ↔ ∀𝑥(𝑥 = 𝐴𝑥 = 𝐵))
7 sneqr.1 . . 3 𝐴 ∈ V
8 sbceqal 3054 . . 3 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
97, 8ax-mp 5 . 2 (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵)
106, 9sylbi 121 1 ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371   = wceq 1373  wcel 2176  Vcvv 2772  wss 3166  {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sbc 2999  df-in 3172  df-ss 3179  df-sn 3639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator