ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmopabss Unicode version

Theorem dmopabss 4823
Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopabss  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  C_  A
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem dmopabss
StepHypRef Expression
1 dmopab 4822 . 2  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  { x  |  E. y ( x  e.  A  /\  ph ) }
2 19.42v 1899 . . . 4  |-  ( E. y ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  E. y ph ) )
32abbii 2286 . . 3  |-  { x  |  E. y ( x  e.  A  /\  ph ) }  =  {
x  |  ( x  e.  A  /\  E. y ph ) }
4 ssab2 3231 . . 3  |-  { x  |  ( x  e.  A  /\  E. y ph ) }  C_  A
53, 4eqsstri 3179 . 2  |-  { x  |  E. y ( x  e.  A  /\  ph ) }  C_  A
61, 5eqsstri 3179 1  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  C_  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1485    e. wcel 2141   {cab 2156    C_ wss 3121   {copab 4049   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-dm 4621
This theorem is referenced by:  opabex  5720
  Copyright terms: Public domain W3C validator