ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab2 GIF version

Theorem ssab2 3263
Description: Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
ssab2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssab2
StepHypRef Expression
1 simpl 109 . 2 ((𝑥𝐴𝜑) → 𝑥𝐴)
21abssi 3254 1 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2164  {cab 2179  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166
This theorem is referenced by:  ssrab2  3264  zfausab  4171  exss  4256  dmopabss  4874  fabexg  5441
  Copyright terms: Public domain W3C validator