ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  insubm Unicode version

Theorem insubm 13117
Description: The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.)
Assertion
Ref Expression
insubm  |-  ( ( A  e.  (SubMnd `  M )  /\  B  e.  (SubMnd `  M )
)  ->  ( A  i^i  B )  e.  (SubMnd `  M ) )

Proof of Theorem insubm
Dummy variables  a  b  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 13103 . . 3  |-  ( A  e.  (SubMnd `  M
)  ->  M  e.  Mnd )
2 ssinss1 3392 . . . . . . . . 9  |-  ( A 
C_  ( Base `  M
)  ->  ( A  i^i  B )  C_  ( Base `  M ) )
323ad2ant1 1020 . . . . . . . 8  |-  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  A. a  e.  A  A. b  e.  A  ( a
( +g  `  M ) b )  e.  A
)  ->  ( A  i^i  B )  C_  ( Base `  M ) )
43ad2antrl 490 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  ->  ( A  i^i  B )  C_  ( Base `  M ) )
5 elin 3346 . . . . . . . . . . . . 13  |-  ( ( 0g `  M )  e.  ( A  i^i  B )  <->  ( ( 0g
`  M )  e.  A  /\  ( 0g
`  M )  e.  B ) )
65simplbi2com 1455 . . . . . . . . . . . 12  |-  ( ( 0g `  M )  e.  B  ->  (
( 0g `  M
)  e.  A  -> 
( 0g `  M
)  e.  ( A  i^i  B ) ) )
763ad2ant2 1021 . . . . . . . . . . 11  |-  ( ( B  C_  ( Base `  M )  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
)  ->  ( ( 0g `  M )  e.  A  ->  ( 0g `  M )  e.  ( A  i^i  B ) ) )
87com12 30 . . . . . . . . . 10  |-  ( ( 0g `  M )  e.  A  ->  (
( B  C_  ( Base `  M )  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  (
a ( +g  `  M
) b )  e.  B )  ->  ( 0g `  M )  e.  ( A  i^i  B
) ) )
983ad2ant2 1021 . . . . . . . . 9  |-  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  A. a  e.  A  A. b  e.  A  ( a
( +g  `  M ) b )  e.  A
)  ->  ( ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B )  -> 
( 0g `  M
)  e.  ( A  i^i  B ) ) )
109imp 124 . . . . . . . 8  |-  ( ( ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) )  ->  ( 0g `  M )  e.  ( A  i^i  B ) )
1110adantl 277 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  ->  ( 0g `  M )  e.  ( A  i^i  B ) )
12 elin 3346 . . . . . . . . . 10  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
13 elin 3346 . . . . . . . . . 10  |-  ( y  e.  ( A  i^i  B )  <->  ( y  e.  A  /\  y  e.  B ) )
1412, 13anbi12i 460 . . . . . . . . 9  |-  ( ( x  e.  ( A  i^i  B )  /\  y  e.  ( A  i^i  B ) )  <->  ( (
x  e.  A  /\  x  e.  B )  /\  ( y  e.  A  /\  y  e.  B
) ) )
15 oveq1 5929 . . . . . . . . . . . . . . . . 17  |-  ( a  =  x  ->  (
a ( +g  `  M
) b )  =  ( x ( +g  `  M ) b ) )
1615eleq1d 2265 . . . . . . . . . . . . . . . 16  |-  ( a  =  x  ->  (
( a ( +g  `  M ) b )  e.  A  <->  ( x
( +g  `  M ) b )  e.  A
) )
17 oveq2 5930 . . . . . . . . . . . . . . . . 17  |-  ( b  =  y  ->  (
x ( +g  `  M
) b )  =  ( x ( +g  `  M ) y ) )
1817eleq1d 2265 . . . . . . . . . . . . . . . 16  |-  ( b  =  y  ->  (
( x ( +g  `  M ) b )  e.  A  <->  ( x
( +g  `  M ) y )  e.  A
) )
19 simpl 109 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  /\  x  e.  B )  ->  x  e.  A )
2019adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  ->  x  e.  A )
21 eqidd 2197 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  A  /\  x  e.  B )  /\  (
y  e.  A  /\  y  e.  B )
)  /\  a  =  x )  ->  A  =  A )
22 simpl 109 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  A  /\  y  e.  B )  ->  y  e.  A )
2322adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
y  e.  A )
2416, 18, 20, 21, 23rspc2vd 3153 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
( A. a  e.  A  A. b  e.  A  ( a ( +g  `  M ) b )  e.  A  ->  ( x ( +g  `  M ) y )  e.  A ) )
2524com12 30 . . . . . . . . . . . . . 14  |-  ( A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A  ->  ( (
( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  A ) )
26253ad2ant3 1022 . . . . . . . . . . . . 13  |-  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  A. a  e.  A  A. b  e.  A  ( a
( +g  `  M ) b )  e.  A
)  ->  ( (
( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  A ) )
2726ad2antrl 490 . . . . . . . . . . . 12  |-  ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  ->  ( (
( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  A ) )
2827imp 124 . . . . . . . . . . 11  |-  ( ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  /\  ( ( x  e.  A  /\  x  e.  B )  /\  ( y  e.  A  /\  y  e.  B
) ) )  -> 
( x ( +g  `  M ) y )  e.  A )
2915eleq1d 2265 . . . . . . . . . . . . . . . . 17  |-  ( a  =  x  ->  (
( a ( +g  `  M ) b )  e.  B  <->  ( x
( +g  `  M ) b )  e.  B
) )
3017eleq1d 2265 . . . . . . . . . . . . . . . . 17  |-  ( b  =  y  ->  (
( x ( +g  `  M ) b )  e.  B  <->  ( x
( +g  `  M ) y )  e.  B
) )
31 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  A  /\  x  e.  B )  ->  x  e.  B )
3231adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  ->  x  e.  B )
33 eqidd 2197 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  A  /\  x  e.  B )  /\  (
y  e.  A  /\  y  e.  B )
)  /\  a  =  x )  ->  B  =  B )
34 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  A  /\  y  e.  B )  ->  y  e.  B )
3534adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
y  e.  B )
3629, 30, 32, 33, 35rspc2vd 3153 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
( A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B  ->  ( x ( +g  `  M ) y )  e.  B ) )
3736com12 30 . . . . . . . . . . . . . . 15  |-  ( A. a  e.  B  A. b  e.  B  (
a ( +g  `  M
) b )  e.  B  ->  ( (
( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  B ) )
38373ad2ant3 1022 . . . . . . . . . . . . . 14  |-  ( ( B  C_  ( Base `  M )  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
)  ->  ( (
( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  B ) )
3938adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  ( Base `  M )  /\  ( 0g `  M )  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) )  ->  ( ( ( x  e.  A  /\  x  e.  B )  /\  ( y  e.  A  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B ) )
4039adantl 277 . . . . . . . . . . . 12  |-  ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  ->  ( (
( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  B ) )
4140imp 124 . . . . . . . . . . 11  |-  ( ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  /\  ( ( x  e.  A  /\  x  e.  B )  /\  ( y  e.  A  /\  y  e.  B
) ) )  -> 
( x ( +g  `  M ) y )  e.  B )
4228, 41elind 3348 . . . . . . . . . 10  |-  ( ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  /\  ( ( x  e.  A  /\  x  e.  B )  /\  ( y  e.  A  /\  y  e.  B
) ) )  -> 
( x ( +g  `  M ) y )  e.  ( A  i^i  B ) )
4342ex 115 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  ->  ( (
( x  e.  A  /\  x  e.  B
)  /\  ( y  e.  A  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  ( A  i^i  B ) ) )
4414, 43biimtrid 152 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  ->  ( (
x  e.  ( A  i^i  B )  /\  y  e.  ( A  i^i  B ) )  -> 
( x ( +g  `  M ) y )  e.  ( A  i^i  B ) ) )
4544ralrimivv 2578 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  ->  A. x  e.  ( A  i^i  B
) A. y  e.  ( A  i^i  B
) ( x ( +g  `  M ) y )  e.  ( A  i^i  B ) )
464, 11, 453jca 1179 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) ) )  ->  ( ( A  i^i  B )  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  ( A  i^i  B )  /\  A. x  e.  ( A  i^i  B ) A. y  e.  ( A  i^i  B ) ( x ( +g  `  M
) y )  e.  ( A  i^i  B
) ) )
4746ex 115 . . . . 5  |-  ( M  e.  Mnd  ->  (
( ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A )  /\  ( B  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) )  ->  ( ( A  i^i  B )  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  ( A  i^i  B )  /\  A. x  e.  ( A  i^i  B ) A. y  e.  ( A  i^i  B ) ( x ( +g  `  M
) y )  e.  ( A  i^i  B
) ) ) )
48 eqid 2196 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
49 eqid 2196 . . . . . . 7  |-  ( 0g
`  M )  =  ( 0g `  M
)
50 eqid 2196 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
5148, 49, 50issubm 13104 . . . . . 6  |-  ( M  e.  Mnd  ->  ( A  e.  (SubMnd `  M
)  <->  ( A  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  A  /\  A. a  e.  A  A. b  e.  A  (
a ( +g  `  M
) b )  e.  A ) ) )
5248, 49, 50issubm 13104 . . . . . 6  |-  ( M  e.  Mnd  ->  ( B  e.  (SubMnd `  M
)  <->  ( B  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  B  /\  A. a  e.  B  A. b  e.  B  (
a ( +g  `  M
) b )  e.  B ) ) )
5351, 52anbi12d 473 . . . . 5  |-  ( M  e.  Mnd  ->  (
( A  e.  (SubMnd `  M )  /\  B  e.  (SubMnd `  M )
)  <->  ( ( A 
C_  ( Base `  M
)  /\  ( 0g `  M )  e.  A  /\  A. a  e.  A  A. b  e.  A  ( a ( +g  `  M ) b )  e.  A )  /\  ( B  C_  ( Base `  M )  /\  ( 0g `  M )  e.  B  /\  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) ) ) )
5448, 49, 50issubm 13104 . . . . 5  |-  ( M  e.  Mnd  ->  (
( A  i^i  B
)  e.  (SubMnd `  M )  <->  ( ( A  i^i  B )  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  ( A  i^i  B )  /\  A. x  e.  ( A  i^i  B ) A. y  e.  ( A  i^i  B ) ( x ( +g  `  M
) y )  e.  ( A  i^i  B
) ) ) )
5547, 53, 543imtr4d 203 . . . 4  |-  ( M  e.  Mnd  ->  (
( A  e.  (SubMnd `  M )  /\  B  e.  (SubMnd `  M )
)  ->  ( A  i^i  B )  e.  (SubMnd `  M ) ) )
5655expd 258 . . 3  |-  ( M  e.  Mnd  ->  ( A  e.  (SubMnd `  M
)  ->  ( B  e.  (SubMnd `  M )  ->  ( A  i^i  B
)  e.  (SubMnd `  M ) ) ) )
571, 56mpcom 36 . 2  |-  ( A  e.  (SubMnd `  M
)  ->  ( B  e.  (SubMnd `  M )  ->  ( A  i^i  B
)  e.  (SubMnd `  M ) ) )
5857imp 124 1  |-  ( ( A  e.  (SubMnd `  M )  /\  B  e.  (SubMnd `  M )
)  ->  ( A  i^i  B )  e.  (SubMnd `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   A.wral 2475    i^i cin 3156    C_ wss 3157   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Mndcmnd 13057  SubMndcsubmnd 13090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-submnd 13092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator