ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiun2 Unicode version

Theorem ssiun2 3909
Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ssiun2  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )

Proof of Theorem ssiun2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rspe 2515 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E. x  e.  A  y  e.  B )
21ex 114 . . 3  |-  ( x  e.  A  ->  (
y  e.  B  ->  E. x  e.  A  y  e.  B )
)
3 eliun 3870 . . 3  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
42, 3syl6ibr 161 . 2  |-  ( x  e.  A  ->  (
y  e.  B  -> 
y  e.  U_ x  e.  A  B )
)
54ssrdv 3148 1  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   E.wrex 2445    C_ wss 3116   U_ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-iun 3868
This theorem is referenced by:  ssiun2s  3910  triun  4093  ixpf  6686
  Copyright terms: Public domain W3C validator