ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpf Unicode version

Theorem ixpf 6698
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
ixpf  |-  ( F  e.  X_ x  e.  A  B  ->  F : A --> U_ x  e.  A  B
)
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem ixpf
StepHypRef Expression
1 elixp2 6680 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
2 ssiun2 3916 . . . . . . 7  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )
32sseld 3146 . . . . . 6  |-  ( x  e.  A  ->  (
( F `  x
)  e.  B  -> 
( F `  x
)  e.  U_ x  e.  A  B )
)
43ralimia 2531 . . . . 5  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  A. x  e.  A  ( F `  x )  e.  U_ x  e.  A  B
)
54anim2i 340 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  -> 
( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  U_ x  e.  A  B ) )
6 nfcv 2312 . . . . 5  |-  F/_ x A
7 nfiu1 3903 . . . . 5  |-  F/_ x U_ x  e.  A  B
8 nfcv 2312 . . . . 5  |-  F/_ x F
96, 7, 8ffnfvf 5655 . . . 4  |-  ( F : A --> U_ x  e.  A  B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  U_ x  e.  A  B
) )
105, 9sylibr 133 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F : A --> U_ x  e.  A  B )
11103adant1 1010 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F : A --> U_ x  e.  A  B )
121, 11sylbi 120 1  |-  ( F  e.  X_ x  e.  A  B  ->  F : A --> U_ x  e.  A  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    e. wcel 2141   A.wral 2448   _Vcvv 2730   U_ciun 3873    Fn wfn 5193   -->wf 5194   ` cfv 5198   X_cixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ixp 6677
This theorem is referenced by:  uniixp  6699  ixpssmap2g  6705
  Copyright terms: Public domain W3C validator