ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiun2s Unicode version

Theorem ssiun2s 3910
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.)
Hypothesis
Ref Expression
ssiun2s.1  |-  ( x  =  C  ->  B  =  D )
Assertion
Ref Expression
ssiun2s  |-  ( C  e.  A  ->  D  C_ 
U_ x  e.  A  B )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hint:    B( x)

Proof of Theorem ssiun2s
StepHypRef Expression
1 nfcv 2308 . 2  |-  F/_ x C
2 nfcv 2308 . . 3  |-  F/_ x D
3 nfiu1 3896 . . 3  |-  F/_ x U_ x  e.  A  B
42, 3nfss 3135 . 2  |-  F/ x  D  C_  U_ x  e.  A  B
5 ssiun2s.1 . . 3  |-  ( x  =  C  ->  B  =  D )
65sseq1d 3171 . 2  |-  ( x  =  C  ->  ( B  C_  U_ x  e.  A  B  <->  D  C_  U_ x  e.  A  B )
)
7 ssiun2 3909 . 2  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )
81, 4, 6, 7vtoclgaf 2791 1  |-  ( C  e.  A  ->  D  C_ 
U_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    C_ wss 3116   U_ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-iun 3868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator