ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssonunii Unicode version

Theorem ssonunii 4525
Description: The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
ssonuni.1  |-  A  e. 
_V
Assertion
Ref Expression
ssonunii  |-  ( A 
C_  On  ->  U. A  e.  On )

Proof of Theorem ssonunii
StepHypRef Expression
1 ssonuni.1 . 2  |-  A  e. 
_V
2 ssonuni 4524 . 2  |-  ( A  e.  _V  ->  ( A  C_  On  ->  U. A  e.  On ) )
31, 2ax-mp 5 1  |-  ( A 
C_  On  ->  U. A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   _Vcvv 2763    C_ wss 3157   U.cuni 3839   Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by:  bm2.5ii  4532
  Copyright terms: Public domain W3C validator