ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssonunii GIF version

Theorem ssonunii 4343
Description: The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
ssonuni.1 𝐴 ∈ V
Assertion
Ref Expression
ssonunii (𝐴 ⊆ On → 𝐴 ∈ On)

Proof of Theorem ssonunii
StepHypRef Expression
1 ssonuni.1 . 2 𝐴 ∈ V
2 ssonuni 4342 . 2 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
31, 2ax-mp 7 1 (𝐴 ⊆ On → 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1448  Vcvv 2641  wss 3021   cuni 3683  Oncon0 4223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-in 3027  df-ss 3034  df-uni 3684  df-tr 3967  df-iord 4226  df-on 4228
This theorem is referenced by:  bm2.5ii  4350
  Copyright terms: Public domain W3C validator