![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssonunii | GIF version |
Description: The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
ssonuni.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ssonunii | ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssonuni.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ssonuni 4342 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 Vcvv 2641 ⊆ wss 3021 ∪ cuni 3683 Oncon0 4223 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-in 3027 df-ss 3034 df-uni 3684 df-tr 3967 df-iord 4226 df-on 4228 |
This theorem is referenced by: bm2.5ii 4350 |
Copyright terms: Public domain | W3C validator |