Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onun2 | Unicode version |
Description: The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.) |
Ref | Expression |
---|---|
onun2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 3747 | . 2 | |
2 | prexg 4205 | . . . 4 | |
3 | ssonuni 4481 | . . . 4 | |
4 | 2, 3 | syl 14 | . . 3 |
5 | uniprg 3820 | . . . 4 | |
6 | 5 | eleq1d 2244 | . . 3 |
7 | 4, 6 | sylibd 149 | . 2 |
8 | 1, 7 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wcel 2146 cvv 2735 cun 3125 wss 3127 cpr 3590 cuni 3805 con0 4357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-uni 3806 df-tr 4097 df-iord 4360 df-on 4362 |
This theorem is referenced by: onun2i 4484 rdgon 6377 |
Copyright terms: Public domain | W3C validator |