ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onun2 Unicode version

Theorem onun2 4581
Description: The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.)
Assertion
Ref Expression
onun2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  B
)  e.  On )

Proof of Theorem onun2
StepHypRef Expression
1 prssi 3825 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  { A ,  B }  C_  On )
2 prexg 4294 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  { A ,  B }  e.  _V )
3 ssonuni 4579 . . . 4  |-  ( { A ,  B }  e.  _V  ->  ( { A ,  B }  C_  On  ->  U. { A ,  B }  e.  On ) )
42, 3syl 14 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( { A ,  B }  C_  On  ->  U. { A ,  B }  e.  On )
)
5 uniprg 3902 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U. { A ,  B }  =  ( A  u.  B )
)
65eleq1d 2298 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( U. { A ,  B }  e.  On  <->  ( A  u.  B )  e.  On ) )
74, 6sylibd 149 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( { A ,  B }  C_  On  ->  ( A  u.  B )  e.  On ) )
81, 7mpd 13 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   _Vcvv 2799    u. cun 3195    C_ wss 3197   {cpr 3667   U.cuni 3887   Oncon0 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458
This theorem is referenced by:  onun2i  4582  rdgon  6530
  Copyright terms: Public domain W3C validator