ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onun2 Unicode version

Theorem onun2 4537
Description: The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.)
Assertion
Ref Expression
onun2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  B
)  e.  On )

Proof of Theorem onun2
StepHypRef Expression
1 prssi 3790 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  { A ,  B }  C_  On )
2 prexg 4254 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  { A ,  B }  e.  _V )
3 ssonuni 4535 . . . 4  |-  ( { A ,  B }  e.  _V  ->  ( { A ,  B }  C_  On  ->  U. { A ,  B }  e.  On ) )
42, 3syl 14 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( { A ,  B }  C_  On  ->  U. { A ,  B }  e.  On )
)
5 uniprg 3864 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U. { A ,  B }  =  ( A  u.  B )
)
65eleq1d 2273 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( U. { A ,  B }  e.  On  <->  ( A  u.  B )  e.  On ) )
74, 6sylibd 149 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( { A ,  B }  C_  On  ->  ( A  u.  B )  e.  On ) )
81, 7mpd 13 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   _Vcvv 2771    u. cun 3163    C_ wss 3165   {cpr 3633   U.cuni 3849   Oncon0 4409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-uni 3850  df-tr 4142  df-iord 4412  df-on 4414
This theorem is referenced by:  onun2i  4538  rdgon  6471
  Copyright terms: Public domain W3C validator