ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onun2 Unicode version

Theorem onun2 4538
Description: The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.)
Assertion
Ref Expression
onun2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  B
)  e.  On )

Proof of Theorem onun2
StepHypRef Expression
1 prssi 3791 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  { A ,  B }  C_  On )
2 prexg 4255 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  { A ,  B }  e.  _V )
3 ssonuni 4536 . . . 4  |-  ( { A ,  B }  e.  _V  ->  ( { A ,  B }  C_  On  ->  U. { A ,  B }  e.  On ) )
42, 3syl 14 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( { A ,  B }  C_  On  ->  U. { A ,  B }  e.  On )
)
5 uniprg 3865 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U. { A ,  B }  =  ( A  u.  B )
)
65eleq1d 2274 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( U. { A ,  B }  e.  On  <->  ( A  u.  B )  e.  On ) )
74, 6sylibd 149 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( { A ,  B }  C_  On  ->  ( A  u.  B )  e.  On ) )
81, 7mpd 13 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   _Vcvv 2772    u. cun 3164    C_ wss 3166   {cpr 3634   U.cuni 3850   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415
This theorem is referenced by:  onun2i  4539  rdgon  6472
  Copyright terms: Public domain W3C validator