ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bm2.5ii Unicode version

Theorem bm2.5ii 4532
Description: Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
bm2.5ii.1  |-  A  e. 
_V
Assertion
Ref Expression
bm2.5ii  |-  ( A 
C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
Distinct variable group:    x, y, A

Proof of Theorem bm2.5ii
StepHypRef Expression
1 bm2.5ii.1 . . 3  |-  A  e. 
_V
21ssonunii 4525 . 2  |-  ( A 
C_  On  ->  U. A  e.  On )
3 intmin 3894 . . 3  |-  ( U. A  e.  On  ->  |^|
{ x  e.  On  |  U. A  C_  x }  =  U. A )
4 unissb 3869 . . . . . 6  |-  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x )
54a1i 9 . . . . 5  |-  ( x  e.  On  ->  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x ) )
65rabbiia 2748 . . . 4  |-  { x  e.  On  |  U. A  C_  x }  =  {
x  e.  On  |  A. y  e.  A  y  C_  x }
76inteqi 3878 . . 3  |-  |^| { x  e.  On  |  U. A  C_  x }  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x }
83, 7eqtr3di 2244 . 2  |-  ( U. A  e.  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
92, 8syl 14 1  |-  ( A 
C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763    C_ wss 3157   U.cuni 3839   |^|cint 3874   Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator