ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bm2.5ii Unicode version

Theorem bm2.5ii 4588
Description: Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
bm2.5ii.1  |-  A  e. 
_V
Assertion
Ref Expression
bm2.5ii  |-  ( A 
C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
Distinct variable group:    x, y, A

Proof of Theorem bm2.5ii
StepHypRef Expression
1 bm2.5ii.1 . . 3  |-  A  e. 
_V
21ssonunii 4581 . 2  |-  ( A 
C_  On  ->  U. A  e.  On )
3 intmin 3943 . . 3  |-  ( U. A  e.  On  ->  |^|
{ x  e.  On  |  U. A  C_  x }  =  U. A )
4 unissb 3918 . . . . . 6  |-  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x )
54a1i 9 . . . . 5  |-  ( x  e.  On  ->  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x ) )
65rabbiia 2784 . . . 4  |-  { x  e.  On  |  U. A  C_  x }  =  {
x  e.  On  |  A. y  e.  A  y  C_  x }
76inteqi 3927 . . 3  |-  |^| { x  e.  On  |  U. A  C_  x }  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x }
83, 7eqtr3di 2277 . 2  |-  ( U. A  e.  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
92, 8syl 14 1  |-  ( A 
C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799    C_ wss 3197   U.cuni 3888   |^|cint 3923   Oncon0 4454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-in 3203  df-ss 3210  df-uni 3889  df-int 3924  df-tr 4183  df-iord 4457  df-on 4459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator