Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bm2.5ii | Unicode version |
Description: Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
bm2.5ii.1 |
Ref | Expression |
---|---|
bm2.5ii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bm2.5ii.1 | . . 3 | |
2 | 1 | ssonunii 4466 | . 2 |
3 | intmin 3844 | . . 3 | |
4 | unissb 3819 | . . . . . 6 | |
5 | 4 | a1i 9 | . . . . 5 |
6 | 5 | rabbiia 2711 | . . . 4 |
7 | 6 | inteqi 3828 | . . 3 |
8 | 3, 7 | eqtr3di 2214 | . 2 |
9 | 2, 8 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 wral 2444 crab 2448 cvv 2726 wss 3116 cuni 3789 cint 3824 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |