ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc11 Unicode version

Theorem suc11 4558
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
suc11  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem suc11
StepHypRef Expression
1 suc11g 4557 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   Oncon0 4364   suc csuc 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2740  df-dif 3132  df-un 3134  df-sn 3599  df-pr 3600  df-suc 4372
This theorem is referenced by:  omp1eomlem  7093  onntri35  7236
  Copyright terms: Public domain W3C validator