![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpidm12 | GIF version |
Description: Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tpidm12 | ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3436 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | uneq1i 3134 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐴, 𝐴} ∪ {𝐵}) |
3 | df-pr 3429 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
4 | df-tp 3430 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = ({𝐴, 𝐴} ∪ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4ri 2114 | 1 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∪ cun 2982 {csn 3422 {cpr 3423 {ctp 3424 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2614 df-un 2988 df-pr 3429 df-tp 3430 |
This theorem is referenced by: tpidm13 3516 tpidm23 3517 tpidm 3518 |
Copyright terms: Public domain | W3C validator |