| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpidm12 | GIF version | ||
| Description: Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| tpidm12 | ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3680 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | uneq1i 3354 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐴, 𝐴} ∪ {𝐵}) |
| 3 | df-pr 3673 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 4 | df-tp 3674 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = ({𝐴, 𝐴} ∪ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4ri 2261 | 1 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 {csn 3666 {cpr 3667 {ctp 3668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-pr 3673 df-tp 3674 |
| This theorem is referenced by: tpidm13 3766 tpidm23 3767 tpidm 3768 |
| Copyright terms: Public domain | W3C validator |