ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpidm12 GIF version

Theorem tpidm12 3731
Description: Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm12 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm12
StepHypRef Expression
1 dfsn2 3646 . . 3 {𝐴} = {𝐴, 𝐴}
21uneq1i 3322 . 2 ({𝐴} ∪ {𝐵}) = ({𝐴, 𝐴} ∪ {𝐵})
3 df-pr 3639 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 df-tp 3640 . 2 {𝐴, 𝐴, 𝐵} = ({𝐴, 𝐴} ∪ {𝐵})
52, 3, 43eqtr4ri 2236 1 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:   = wceq 1372  cun 3163  {csn 3632  {cpr 3633  {ctp 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-pr 3639  df-tp 3640
This theorem is referenced by:  tpidm13  3732  tpidm23  3733  tpidm  3734
  Copyright terms: Public domain W3C validator