ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpidm12 GIF version

Theorem tpidm12 3765
Description: Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm12 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm12
StepHypRef Expression
1 dfsn2 3680 . . 3 {𝐴} = {𝐴, 𝐴}
21uneq1i 3354 . 2 ({𝐴} ∪ {𝐵}) = ({𝐴, 𝐴} ∪ {𝐵})
3 df-pr 3673 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 df-tp 3674 . 2 {𝐴, 𝐴, 𝐵} = ({𝐴, 𝐴} ∪ {𝐵})
52, 3, 43eqtr4ri 2261 1 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cun 3195  {csn 3666  {cpr 3667  {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-pr 3673  df-tp 3674
This theorem is referenced by:  tpidm13  3766  tpidm23  3767  tpidm  3768
  Copyright terms: Public domain W3C validator