ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpidm23 GIF version

Theorem tpidm23 3705
Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm23 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm23
StepHypRef Expression
1 tprot 3697 . 2 {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴}
2 tpidm12 3703 . 2 {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴}
3 prcom 3680 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
41, 2, 33eqtri 2212 1 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:   = wceq 1363  {cpr 3605  {ctp 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3or 980  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-tp 3612
This theorem is referenced by:  tppreq3  3707
  Copyright terms: Public domain W3C validator