| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpidm23 | GIF version | ||
| Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| tpidm23 | ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tprot 3715 | . 2 ⊢ {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴} | |
| 2 | tpidm12 3721 | . 2 ⊢ {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴} | |
| 3 | prcom 3698 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 4 | 1, 2, 3 | 3eqtri 2221 | 1 ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 {cpr 3623 {ctp 3624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-tp 3630 |
| This theorem is referenced by: tppreq3 3725 |
| Copyright terms: Public domain | W3C validator |