ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpidm23 GIF version

Theorem tpidm23 3538
Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm23 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm23
StepHypRef Expression
1 tprot 3530 . 2 {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴}
2 tpidm12 3536 . 2 {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴}
3 prcom 3513 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
41, 2, 33eqtri 2112 1 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:   = wceq 1289  {cpr 3442  {ctp 3443
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3or 925  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-sn 3447  df-pr 3448  df-tp 3449
This theorem is referenced by:  tppreq3  3540
  Copyright terms: Public domain W3C validator