Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tpidm23 | GIF version |
Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tpidm23 | ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 3676 | . 2 ⊢ {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴} | |
2 | tpidm12 3682 | . 2 ⊢ {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴} | |
3 | prcom 3659 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
4 | 1, 2, 3 | 3eqtri 2195 | 1 ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 {cpr 3584 {ctp 3585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-tp 3591 |
This theorem is referenced by: tppreq3 3686 |
Copyright terms: Public domain | W3C validator |