| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > univ | GIF version | ||
| Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| univ | ⊢ ∪ V = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwv 3887 | . . 3 ⊢ 𝒫 V = V | |
| 2 | 1 | unieqi 3898 | . 2 ⊢ ∪ 𝒫 V = ∪ V |
| 3 | unipw 4303 | . 2 ⊢ ∪ 𝒫 V = V | |
| 4 | 2, 3 | eqtr3i 2252 | 1 ⊢ ∪ V = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 Vcvv 2799 𝒫 cpw 3649 ∪ cuni 3888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-uni 3889 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |