ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  univ GIF version

Theorem univ 4544
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
univ V = V

Proof of Theorem univ
StepHypRef Expression
1 pwv 3866 . . 3 𝒫 V = V
21unieqi 3877 . 2 𝒫 V = V
3 unipw 4282 . 2 𝒫 V = V
42, 3eqtr3i 2232 1 V = V
Colors of variables: wff set class
Syntax hints:   = wceq 1375  Vcvv 2779  𝒫 cpw 3629   cuni 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-v 2781  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-uni 3868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator