| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > univ | GIF version | ||
| Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| univ | ⊢ ∪ V = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwv 3866 | . . 3 ⊢ 𝒫 V = V | |
| 2 | 1 | unieqi 3877 | . 2 ⊢ ∪ 𝒫 V = ∪ V |
| 3 | unipw 4282 | . 2 ⊢ ∪ 𝒫 V = V | |
| 4 | 2, 3 | eqtr3i 2232 | 1 ⊢ ∪ V = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 Vcvv 2779 𝒫 cpw 3629 ∪ cuni 3867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-uni 3868 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |