Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifpw | Unicode version |
Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
Ref | Expression |
---|---|
eldifpw.1 |
Ref | Expression |
---|---|
eldifpw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 3568 | . . . 4 | |
2 | unss1 3291 | . . . . 5 | |
3 | eldifpw.1 | . . . . . . 7 | |
4 | unexg 4421 | . . . . . . 7 | |
5 | 3, 4 | mpan2 422 | . . . . . 6 |
6 | elpwg 3567 | . . . . . 6 | |
7 | 5, 6 | syl 14 | . . . . 5 |
8 | 2, 7 | syl5ibr 155 | . . . 4 |
9 | 1, 8 | mpd 13 | . . 3 |
10 | elpwi 3568 | . . . . 5 | |
11 | 10 | unssbd 3300 | . . . 4 |
12 | 11 | con3i 622 | . . 3 |
13 | 9, 12 | anim12i 336 | . 2 |
14 | eldif 3125 | . 2 | |
15 | 13, 14 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2136 cvv 2726 cdif 3113 cun 3114 wss 3116 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |