Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifpw | Unicode version |
Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
Ref | Expression |
---|---|
eldifpw.1 |
Ref | Expression |
---|---|
eldifpw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 3552 | . . . 4 | |
2 | unss1 3276 | . . . . 5 | |
3 | eldifpw.1 | . . . . . . 7 | |
4 | unexg 4402 | . . . . . . 7 | |
5 | 3, 4 | mpan2 422 | . . . . . 6 |
6 | elpwg 3551 | . . . . . 6 | |
7 | 5, 6 | syl 14 | . . . . 5 |
8 | 2, 7 | syl5ibr 155 | . . . 4 |
9 | 1, 8 | mpd 13 | . . 3 |
10 | elpwi 3552 | . . . . 5 | |
11 | 10 | unssbd 3285 | . . . 4 |
12 | 11 | con3i 622 | . . 3 |
13 | 9, 12 | anim12i 336 | . 2 |
14 | eldif 3111 | . 2 | |
15 | 13, 14 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2128 cvv 2712 cdif 3099 cun 3100 wss 3102 cpw 3543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |