| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordpwsucexmid | Unicode version | ||
| Description: The subset in ordpwsucss 4623 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| ordpwsucexmid.1 |
|
| Ref | Expression |
|---|---|
| ordpwsucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 4216 |
. . . . 5
| |
| 2 | 0elon 4447 |
. . . . 5
| |
| 3 | elin 3360 |
. . . . 5
| |
| 4 | 1, 2, 3 | mpbir2an 945 |
. . . 4
|
| 5 | ordtriexmidlem 4575 |
. . . . 5
| |
| 6 | suceq 4457 |
. . . . . . 7
| |
| 7 | pweq 3624 |
. . . . . . . 8
| |
| 8 | 7 | ineq1d 3377 |
. . . . . . 7
|
| 9 | 6, 8 | eqeq12d 2221 |
. . . . . 6
|
| 10 | ordpwsucexmid.1 |
. . . . . 6
| |
| 11 | 9, 10 | vtoclri 2852 |
. . . . 5
|
| 12 | 5, 11 | ax-mp 5 |
. . . 4
|
| 13 | 4, 12 | eleqtrri 2282 |
. . 3
|
| 14 | elsuci 4458 |
. . 3
| |
| 15 | 13, 14 | ax-mp 5 |
. 2
|
| 16 | 0ex 4179 |
. . . . . 6
| |
| 17 | 16 | snid 3669 |
. . . . 5
|
| 18 | biidd 172 |
. . . . . 6
| |
| 19 | 18 | elrab3 2934 |
. . . . 5
|
| 20 | 17, 19 | ax-mp 5 |
. . . 4
|
| 21 | 20 | biimpi 120 |
. . 3
|
| 22 | ordtriexmidlem2 4576 |
. . . 4
| |
| 23 | 22 | eqcoms 2209 |
. . 3
|
| 24 | 21, 23 | orim12i 761 |
. 2
|
| 25 | 15, 24 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |