ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucexmid Unicode version

Theorem ordpwsucexmid 4616
Description: The subset in ordpwsucss 4613 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.)
Hypothesis
Ref Expression
ordpwsucexmid.1  |-  A. x  e.  On  suc  x  =  ( ~P x  i^i 
On )
Assertion
Ref Expression
ordpwsucexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem ordpwsucexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0elpw 4207 . . . . 5  |-  (/)  e.  ~P { z  e.  { (/)
}  |  ph }
2 0elon 4437 . . . . 5  |-  (/)  e.  On
3 elin 3355 . . . . 5  |-  ( (/)  e.  ( ~P { z  e.  { (/) }  |  ph }  i^i  On )  <-> 
( (/)  e.  ~P {
z  e.  { (/) }  |  ph }  /\  (/) 
e.  On ) )
41, 2, 3mpbir2an 944 . . . 4  |-  (/)  e.  ( ~P { z  e. 
{ (/) }  |  ph }  i^i  On )
5 ordtriexmidlem 4565 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  On
6 suceq 4447 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  suc  x  =  suc  { z  e.  { (/)
}  |  ph }
)
7 pweq 3618 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ~P x  =  ~P { z  e. 
{ (/) }  |  ph } )
87ineq1d 3372 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ~P x  i^i  On )  =  ( ~P { z  e. 
{ (/) }  |  ph }  i^i  On ) )
96, 8eqeq12d 2219 . . . . . 6  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( suc  x  =  ( ~P x  i^i  On )  <->  suc  { z  e.  { (/) }  |  ph }  =  ( ~P { z  e.  { (/)
}  |  ph }  i^i  On ) ) )
10 ordpwsucexmid.1 . . . . . 6  |-  A. x  e.  On  suc  x  =  ( ~P x  i^i 
On )
119, 10vtoclri 2847 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  suc  { z  e.  { (/) }  |  ph }  =  ( ~P { z  e.  { (/)
}  |  ph }  i^i  On ) )
125, 11ax-mp 5 . . . 4  |-  suc  {
z  e.  { (/) }  |  ph }  =  ( ~P { z  e. 
{ (/) }  |  ph }  i^i  On )
134, 12eleqtrri 2280 . . 3  |-  (/)  e.  suc  { z  e.  { (/) }  |  ph }
14 elsuci 4448 . . 3  |-  ( (/)  e.  suc  { z  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  {
z  e.  { (/) }  |  ph }  \/  (/)  =  { z  e. 
{ (/) }  |  ph } ) )
1513, 14ax-mp 5 . 2  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  \/  (/)  =  { z  e.  { (/) }  |  ph } )
16 0ex 4170 . . . . . 6  |-  (/)  e.  _V
1716snid 3663 . . . . 5  |-  (/)  e.  { (/)
}
18 biidd 172 . . . . . 6  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
1918elrab3 2929 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
2017, 19ax-mp 5 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
2120biimpi 120 . . 3  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
22 ordtriexmidlem2 4566 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
2322eqcoms 2207 . . 3  |-  ( (/)  =  { z  e.  { (/)
}  |  ph }  ->  -.  ph )
2421, 23orim12i 760 . 2  |-  ( (
(/)  e.  { z  e.  { (/) }  |  ph }  \/  (/)  =  {
z  e.  { (/) }  |  ph } )  ->  ( ph  \/  -.  ph ) )
2515, 24ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    \/ wo 709    = wceq 1372    e. wcel 2175   A.wral 2483   {crab 2487    i^i cin 3164   (/)c0 3459   ~Pcpw 3615   {csn 3632   Oncon0 4408   suc csuc 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-uni 3850  df-tr 4142  df-iord 4411  df-on 4413  df-suc 4416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator