ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucexmid Unicode version

Theorem ordpwsucexmid 4530
Description: The subset in ordpwsucss 4527 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.)
Hypothesis
Ref Expression
ordpwsucexmid.1  |-  A. x  e.  On  suc  x  =  ( ~P x  i^i 
On )
Assertion
Ref Expression
ordpwsucexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem ordpwsucexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0elpw 4126 . . . . 5  |-  (/)  e.  ~P { z  e.  { (/)
}  |  ph }
2 0elon 4353 . . . . 5  |-  (/)  e.  On
3 elin 3290 . . . . 5  |-  ( (/)  e.  ( ~P { z  e.  { (/) }  |  ph }  i^i  On )  <-> 
( (/)  e.  ~P {
z  e.  { (/) }  |  ph }  /\  (/) 
e.  On ) )
41, 2, 3mpbir2an 927 . . . 4  |-  (/)  e.  ( ~P { z  e. 
{ (/) }  |  ph }  i^i  On )
5 ordtriexmidlem 4479 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  On
6 suceq 4363 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  suc  x  =  suc  { z  e.  { (/)
}  |  ph }
)
7 pweq 3546 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ~P x  =  ~P { z  e. 
{ (/) }  |  ph } )
87ineq1d 3307 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ~P x  i^i  On )  =  ( ~P { z  e. 
{ (/) }  |  ph }  i^i  On ) )
96, 8eqeq12d 2172 . . . . . 6  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( suc  x  =  ( ~P x  i^i  On )  <->  suc  { z  e.  { (/) }  |  ph }  =  ( ~P { z  e.  { (/)
}  |  ph }  i^i  On ) ) )
10 ordpwsucexmid.1 . . . . . 6  |-  A. x  e.  On  suc  x  =  ( ~P x  i^i 
On )
119, 10vtoclri 2787 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  suc  { z  e.  { (/) }  |  ph }  =  ( ~P { z  e.  { (/)
}  |  ph }  i^i  On ) )
125, 11ax-mp 5 . . . 4  |-  suc  {
z  e.  { (/) }  |  ph }  =  ( ~P { z  e. 
{ (/) }  |  ph }  i^i  On )
134, 12eleqtrri 2233 . . 3  |-  (/)  e.  suc  { z  e.  { (/) }  |  ph }
14 elsuci 4364 . . 3  |-  ( (/)  e.  suc  { z  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  {
z  e.  { (/) }  |  ph }  \/  (/)  =  { z  e. 
{ (/) }  |  ph } ) )
1513, 14ax-mp 5 . 2  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  \/  (/)  =  { z  e.  { (/) }  |  ph } )
16 0ex 4092 . . . . . 6  |-  (/)  e.  _V
1716snid 3591 . . . . 5  |-  (/)  e.  { (/)
}
18 biidd 171 . . . . . 6  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
1918elrab3 2869 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
2017, 19ax-mp 5 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
2120biimpi 119 . . 3  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
22 ordtriexmidlem2 4480 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
2322eqcoms 2160 . . 3  |-  ( (/)  =  { z  e.  { (/)
}  |  ph }  ->  -.  ph )
2421, 23orim12i 749 . 2  |-  ( (
(/)  e.  { z  e.  { (/) }  |  ph }  \/  (/)  =  {
z  e.  { (/) }  |  ph } )  ->  ( ph  \/  -.  ph ) )
2515, 24ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104    \/ wo 698    = wceq 1335    e. wcel 2128   A.wral 2435   {crab 2439    i^i cin 3101   (/)c0 3394   ~Pcpw 3543   {csn 3560   Oncon0 4324   suc csuc 4326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-nul 4091  ax-pow 4136
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-uni 3774  df-tr 4064  df-iord 4327  df-on 4329  df-suc 4332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator