| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordpwsucexmid | Unicode version | ||
| Description: The subset in ordpwsucss 4658 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| ordpwsucexmid.1 |
|
| Ref | Expression |
|---|---|
| ordpwsucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 4247 |
. . . . 5
| |
| 2 | 0elon 4482 |
. . . . 5
| |
| 3 | elin 3387 |
. . . . 5
| |
| 4 | 1, 2, 3 | mpbir2an 948 |
. . . 4
|
| 5 | ordtriexmidlem 4610 |
. . . . 5
| |
| 6 | suceq 4492 |
. . . . . . 7
| |
| 7 | pweq 3652 |
. . . . . . . 8
| |
| 8 | 7 | ineq1d 3404 |
. . . . . . 7
|
| 9 | 6, 8 | eqeq12d 2244 |
. . . . . 6
|
| 10 | ordpwsucexmid.1 |
. . . . . 6
| |
| 11 | 9, 10 | vtoclri 2878 |
. . . . 5
|
| 12 | 5, 11 | ax-mp 5 |
. . . 4
|
| 13 | 4, 12 | eleqtrri 2305 |
. . 3
|
| 14 | elsuci 4493 |
. . 3
| |
| 15 | 13, 14 | ax-mp 5 |
. 2
|
| 16 | 0ex 4210 |
. . . . . 6
| |
| 17 | 16 | snid 3697 |
. . . . 5
|
| 18 | biidd 172 |
. . . . . 6
| |
| 19 | 18 | elrab3 2960 |
. . . . 5
|
| 20 | 17, 19 | ax-mp 5 |
. . . 4
|
| 21 | 20 | biimpi 120 |
. . 3
|
| 22 | ordtriexmidlem2 4611 |
. . . 4
| |
| 23 | 22 | eqcoms 2232 |
. . 3
|
| 24 | 21, 23 | orim12i 764 |
. 2
|
| 25 | 15, 24 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |