| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordpwsucexmid | Unicode version | ||
| Description: The subset in ordpwsucss 4603 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| ordpwsucexmid.1 | 
 | 
| Ref | Expression | 
|---|---|
| ordpwsucexmid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0elpw 4197 | 
. . . . 5
 | |
| 2 | 0elon 4427 | 
. . . . 5
 | |
| 3 | elin 3346 | 
. . . . 5
 | |
| 4 | 1, 2, 3 | mpbir2an 944 | 
. . . 4
 | 
| 5 | ordtriexmidlem 4555 | 
. . . . 5
 | |
| 6 | suceq 4437 | 
. . . . . . 7
 | |
| 7 | pweq 3608 | 
. . . . . . . 8
 | |
| 8 | 7 | ineq1d 3363 | 
. . . . . . 7
 | 
| 9 | 6, 8 | eqeq12d 2211 | 
. . . . . 6
 | 
| 10 | ordpwsucexmid.1 | 
. . . . . 6
 | |
| 11 | 9, 10 | vtoclri 2839 | 
. . . . 5
 | 
| 12 | 5, 11 | ax-mp 5 | 
. . . 4
 | 
| 13 | 4, 12 | eleqtrri 2272 | 
. . 3
 | 
| 14 | elsuci 4438 | 
. . 3
 | |
| 15 | 13, 14 | ax-mp 5 | 
. 2
 | 
| 16 | 0ex 4160 | 
. . . . . 6
 | |
| 17 | 16 | snid 3653 | 
. . . . 5
 | 
| 18 | biidd 172 | 
. . . . . 6
 | |
| 19 | 18 | elrab3 2921 | 
. . . . 5
 | 
| 20 | 17, 19 | ax-mp 5 | 
. . . 4
 | 
| 21 | 20 | biimpi 120 | 
. . 3
 | 
| 22 | ordtriexmidlem2 4556 | 
. . . 4
 | |
| 23 | 22 | eqcoms 2199 | 
. . 3
 | 
| 24 | 21, 23 | orim12i 760 | 
. 2
 | 
| 25 | 15, 24 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |