| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordpwsucexmid | Unicode version | ||
| Description: The subset in ordpwsucss 4613 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| ordpwsucexmid.1 |
|
| Ref | Expression |
|---|---|
| ordpwsucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 4207 |
. . . . 5
| |
| 2 | 0elon 4437 |
. . . . 5
| |
| 3 | elin 3355 |
. . . . 5
| |
| 4 | 1, 2, 3 | mpbir2an 944 |
. . . 4
|
| 5 | ordtriexmidlem 4565 |
. . . . 5
| |
| 6 | suceq 4447 |
. . . . . . 7
| |
| 7 | pweq 3618 |
. . . . . . . 8
| |
| 8 | 7 | ineq1d 3372 |
. . . . . . 7
|
| 9 | 6, 8 | eqeq12d 2219 |
. . . . . 6
|
| 10 | ordpwsucexmid.1 |
. . . . . 6
| |
| 11 | 9, 10 | vtoclri 2847 |
. . . . 5
|
| 12 | 5, 11 | ax-mp 5 |
. . . 4
|
| 13 | 4, 12 | eleqtrri 2280 |
. . 3
|
| 14 | elsuci 4448 |
. . 3
| |
| 15 | 13, 14 | ax-mp 5 |
. 2
|
| 16 | 0ex 4170 |
. . . . . 6
| |
| 17 | 16 | snid 3663 |
. . . . 5
|
| 18 | biidd 172 |
. . . . . 6
| |
| 19 | 18 | elrab3 2929 |
. . . . 5
|
| 20 | 17, 19 | ax-mp 5 |
. . . 4
|
| 21 | 20 | biimpi 120 |
. . 3
|
| 22 | ordtriexmidlem2 4566 |
. . . 4
| |
| 23 | 22 | eqcoms 2207 |
. . 3
|
| 24 | 21, 23 | orim12i 760 |
. 2
|
| 25 | 15, 24 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-uni 3850 df-tr 4142 df-iord 4411 df-on 4413 df-suc 4416 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |