ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclga Unicode version

Theorem vtoclga 2844
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
vtoclga.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclga.2  |-  ( x  e.  B  ->  ph )
Assertion
Ref Expression
vtoclga  |-  ( A  e.  B  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem vtoclga
StepHypRef Expression
1 nfcv 2350 . 2  |-  F/_ x A
2 nfv 1552 . 2  |-  F/ x ps
3 vtoclga.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtoclga.2 . 2  |-  ( x  e.  B  ->  ph )
51, 2, 3, 4vtoclgaf 2843 1  |-  ( A  e.  B  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  vtoclri  2855  ssuni  3886  ordtriexmid  4587  onsucsssucexmid  4593  tfis3  4652  fvmpt3  5681  fvmptssdm  5687  fnressn  5793  fressnfv  5794  caovord  6141  caovimo  6163  tfrlem1  6417  nnacl  6589  nnmcl  6590  nnacom  6593  nnaass  6594  nndi  6595  nnmass  6596  nnmsucr  6597  nnmcom  6598  nnsucsssuc  6601  nntri3or  6602  nnaordi  6617  nnaword  6620  nnmordi  6625  nnaordex  6637  ixpfn  6814  findcard  7011  findcard2  7012  findcard2s  7013  exmidomni  7270  indpi  7490  prarloclem3  7645  uzind4s2  9747  cnref1o  9807  frec2uzrdg  10591  expcl2lemap  10733  seq3coll  11024  climub  11770  climserle  11771  fsum3cvg  11804  summodclem2a  11807  prodfap0  11971  prodfrecap  11972  fproddccvg  11998  alginv  12484  algcvg  12485  algcvga  12488  algfx  12489  prmind2  12557  prmpwdvds  12793  lgsdir2lem4  15623
  Copyright terms: Public domain W3C validator