ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclga Unicode version

Theorem vtoclga 2830
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
vtoclga.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclga.2  |-  ( x  e.  B  ->  ph )
Assertion
Ref Expression
vtoclga  |-  ( A  e.  B  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem vtoclga
StepHypRef Expression
1 nfcv 2339 . 2  |-  F/_ x A
2 nfv 1542 . 2  |-  F/ x ps
3 vtoclga.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtoclga.2 . 2  |-  ( x  e.  B  ->  ph )
51, 2, 3, 4vtoclgaf 2829 1  |-  ( A  e.  B  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  vtoclri  2839  ssuni  3862  ordtriexmid  4558  onsucsssucexmid  4564  tfis3  4623  fvmpt3  5641  fvmptssdm  5647  fnressn  5749  fressnfv  5750  caovord  6096  caovimo  6118  tfrlem1  6367  nnacl  6539  nnmcl  6540  nnacom  6543  nnaass  6544  nndi  6545  nnmass  6546  nnmsucr  6547  nnmcom  6548  nnsucsssuc  6551  nntri3or  6552  nnaordi  6567  nnaword  6570  nnmordi  6575  nnaordex  6587  ixpfn  6764  findcard  6950  findcard2  6951  findcard2s  6952  exmidomni  7209  indpi  7411  prarloclem3  7566  uzind4s2  9667  cnref1o  9727  frec2uzrdg  10503  expcl2lemap  10645  seq3coll  10936  climub  11511  climserle  11512  fsum3cvg  11545  summodclem2a  11548  prodfap0  11712  prodfrecap  11713  fproddccvg  11739  alginv  12225  algcvg  12226  algcvga  12229  algfx  12230  prmind2  12298  prmpwdvds  12534  lgsdir2lem4  15282
  Copyright terms: Public domain W3C validator