ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclga Unicode version

Theorem vtoclga 2792
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
vtoclga.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclga.2  |-  ( x  e.  B  ->  ph )
Assertion
Ref Expression
vtoclga  |-  ( A  e.  B  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem vtoclga
StepHypRef Expression
1 nfcv 2308 . 2  |-  F/_ x A
2 nfv 1516 . 2  |-  F/ x ps
3 vtoclga.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtoclga.2 . 2  |-  ( x  e.  B  ->  ph )
51, 2, 3, 4vtoclgaf 2791 1  |-  ( A  e.  B  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  vtoclri  2801  ssuni  3811  ordtriexmid  4498  onsucsssucexmid  4504  tfis3  4563  fvmpt3  5565  fvmptssdm  5570  fnressn  5671  fressnfv  5672  caovord  6013  caovimo  6035  tfrlem1  6276  nnacl  6448  nnmcl  6449  nnacom  6452  nnaass  6453  nndi  6454  nnmass  6455  nnmsucr  6456  nnmcom  6457  nnsucsssuc  6460  nntri3or  6461  nnaordi  6476  nnaword  6479  nnmordi  6484  nnaordex  6495  ixpfn  6670  findcard  6854  findcard2  6855  findcard2s  6856  exmidomni  7106  indpi  7283  prarloclem3  7438  uzind4s2  9529  cnref1o  9588  frec2uzrdg  10344  expcl2lemap  10467  seq3coll  10755  climub  11285  climserle  11286  fsum3cvg  11319  summodclem2a  11322  prodfap0  11486  prodfrecap  11487  fproddccvg  11513  alginv  11979  algcvg  11980  algcvga  11983  algfx  11984  prmind2  12052  prmpwdvds  12285  lgsdir2lem4  13572
  Copyright terms: Public domain W3C validator