ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclga Unicode version

Theorem vtoclga 2830
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
vtoclga.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclga.2  |-  ( x  e.  B  ->  ph )
Assertion
Ref Expression
vtoclga  |-  ( A  e.  B  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem vtoclga
StepHypRef Expression
1 nfcv 2339 . 2  |-  F/_ x A
2 nfv 1542 . 2  |-  F/ x ps
3 vtoclga.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtoclga.2 . 2  |-  ( x  e.  B  ->  ph )
51, 2, 3, 4vtoclgaf 2829 1  |-  ( A  e.  B  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  vtoclri  2839  ssuni  3862  ordtriexmid  4558  onsucsssucexmid  4564  tfis3  4623  fvmpt3  5643  fvmptssdm  5649  fnressn  5751  fressnfv  5752  caovord  6099  caovimo  6121  tfrlem1  6375  nnacl  6547  nnmcl  6548  nnacom  6551  nnaass  6552  nndi  6553  nnmass  6554  nnmsucr  6555  nnmcom  6556  nnsucsssuc  6559  nntri3or  6560  nnaordi  6575  nnaword  6578  nnmordi  6583  nnaordex  6595  ixpfn  6772  findcard  6958  findcard2  6959  findcard2s  6960  exmidomni  7217  indpi  7428  prarloclem3  7583  uzind4s2  9684  cnref1o  9744  frec2uzrdg  10520  expcl2lemap  10662  seq3coll  10953  climub  11528  climserle  11529  fsum3cvg  11562  summodclem2a  11565  prodfap0  11729  prodfrecap  11730  fproddccvg  11756  alginv  12242  algcvg  12243  algcvga  12246  algfx  12247  prmind2  12315  prmpwdvds  12551  lgsdir2lem4  15380
  Copyright terms: Public domain W3C validator