ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12 Unicode version

Theorem xpeq12 4695
Description: Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
xpeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C
)  =  ( B  X.  D ) )

Proof of Theorem xpeq12
StepHypRef Expression
1 xpeq1 4690 . 2  |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C
) )
2 xpeq2 4691 . 2  |-  ( C  =  D  ->  ( B  X.  C )  =  ( B  X.  D
) )
31, 2sylan9eq 2258 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C
)  =  ( B  X.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    X. cxp 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-opab 4107  df-xp 4682
This theorem is referenced by:  xpeq12i  4698  xpeq12d  4701  xpid11  4902  xp11m  5122  tapeq2  7367  pwsval  13156  txtopon  14767  txbasval  14772  ismet  14849  isxmet  14850
  Copyright terms: Public domain W3C validator