ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12 Unicode version

Theorem xpeq12 4630
Description: Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
xpeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C
)  =  ( B  X.  D ) )

Proof of Theorem xpeq12
StepHypRef Expression
1 xpeq1 4625 . 2  |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C
) )
2 xpeq2 4626 . 2  |-  ( C  =  D  ->  ( B  X.  C )  =  ( B  X.  D
) )
31, 2sylan9eq 2223 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C
)  =  ( B  X.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-opab 4051  df-xp 4617
This theorem is referenced by:  xpeq12i  4633  xpeq12d  4636  xpid11  4834  xp11m  5049  txtopon  13056  txbasval  13061  ismet  13138  isxmet  13139
  Copyright terms: Public domain W3C validator