Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpeq12 | Unicode version |
Description: Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4625 | . 2 | |
2 | xpeq2 4626 | . 2 | |
3 | 1, 2 | sylan9eq 2223 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-opab 4051 df-xp 4617 |
This theorem is referenced by: xpeq12i 4633 xpeq12d 4636 xpid11 4834 xp11m 5049 txtopon 13056 txbasval 13061 ismet 13138 isxmet 13139 |
Copyright terms: Public domain | W3C validator |