Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpeq12 | Unicode version |
Description: Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4634 | . 2 | |
2 | xpeq2 4635 | . 2 | |
3 | 1, 2 | sylan9eq 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 cxp 4618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-opab 4060 df-xp 4626 |
This theorem is referenced by: xpeq12i 4642 xpeq12d 4645 xpid11 4843 xp11m 5059 txtopon 13333 txbasval 13338 ismet 13415 isxmet 13416 |
Copyright terms: Public domain | W3C validator |