ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12 Unicode version

Theorem xpeq12 4646
Description: Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
xpeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C
)  =  ( B  X.  D ) )

Proof of Theorem xpeq12
StepHypRef Expression
1 xpeq1 4641 . 2  |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C
) )
2 xpeq2 4642 . 2  |-  ( C  =  D  ->  ( B  X.  C )  =  ( B  X.  D
) )
31, 2sylan9eq 2230 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C
)  =  ( B  X.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    X. cxp 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-opab 4066  df-xp 4633
This theorem is referenced by:  xpeq12i  4649  xpeq12d  4652  xpid11  4851  xp11m  5068  tapeq2  7252  txtopon  13765  txbasval  13770  ismet  13847  isxmet  13848
  Copyright terms: Public domain W3C validator