Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxpconst Unicode version

Theorem iunxpconst 4567
 Description: Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
iunxpconst
Distinct variable groups:   ,   ,

Proof of Theorem iunxpconst
StepHypRef Expression
1 xpiundir 4566 . 2
2 iunid 3836 . . 3
32xpeq1i 4527 . 2
41, 3eqtr3i 2138 1
 Colors of variables: wff set class Syntax hints:   wceq 1314  csn 3495  ciun 3781   cxp 4505 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-iun 3783  df-opab 3958  df-xp 4513 This theorem is referenced by:  ralxp  4650  rexxp  4651  mpompt  5829  mpompts  6062  fmpo  6065  fsumxp  11156  dvfvalap  12725  pwle2  13027  pwf1oexmid  13028
 Copyright terms: Public domain W3C validator