ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnconst Unicode version

Theorem mapsnconst 6403
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
Assertion
Ref Expression
mapsnconst  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . . 5  |-  B  e. 
_V
2 mapsncnv.x . . . . . 6  |-  X  e. 
_V
32snex 3994 . . . . 5  |-  { X }  e.  _V
41, 3elmap 6386 . . . 4  |-  ( F  e.  ( B  ^m  { X } )  <->  F : { X } --> B )
52fsn2 5434 . . . . 5  |-  ( F : { X } --> B 
<->  ( ( F `  X )  e.  B  /\  F  =  { <. X ,  ( F `
 X ) >. } ) )
65simprbi 269 . . . 4  |-  ( F : { X } --> B  ->  F  =  { <. X ,  ( F `
 X ) >. } )
74, 6sylbi 119 . . 3  |-  ( F  e.  ( B  ^m  { X } )  ->  F  =  { <. X , 
( F `  X
) >. } )
8 mapsncnv.s . . . 4  |-  S  =  { X }
98oveq2i 5624 . . 3  |-  ( B  ^m  S )  =  ( B  ^m  { X } )
107, 9eleq2s 2179 . 2  |-  ( F  e.  ( B  ^m  S )  ->  F  =  { <. X ,  ( F `  X )
>. } )
118xpeq1i 4431 . . 3  |-  ( S  X.  { ( F `
 X ) } )  =  ( { X }  X.  {
( F `  X
) } )
12 fvexg 5287 . . . . 5  |-  ( ( F  e.  ( B  ^m  S )  /\  X  e.  _V )  ->  ( F `  X
)  e.  _V )
132, 12mpan2 416 . . . 4  |-  ( F  e.  ( B  ^m  S )  ->  ( F `  X )  e.  _V )
14 xpsng 5435 . . . 4  |-  ( ( X  e.  _V  /\  ( F `  X )  e.  _V )  -> 
( { X }  X.  { ( F `  X ) } )  =  { <. X , 
( F `  X
) >. } )
152, 13, 14sylancr 405 . . 3  |-  ( F  e.  ( B  ^m  S )  ->  ( { X }  X.  {
( F `  X
) } )  =  { <. X ,  ( F `  X )
>. } )
1611, 15syl5req 2130 . 2  |-  ( F  e.  ( B  ^m  S )  ->  { <. X ,  ( F `  X ) >. }  =  ( S  X.  { ( F `  X ) } ) )
1710, 16eqtrd 2117 1  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1287    e. wcel 1436   _Vcvv 2615   {csn 3431   <.cop 3434    X. cxp 4409   -->wf 4977   ` cfv 4981  (class class class)co 5613    ^m cmap 6357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-mpt 3876  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-map 6359
This theorem is referenced by:  mapsncnv  6404
  Copyright terms: Public domain W3C validator