ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnconst Unicode version

Theorem mapsnconst 6672
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
Assertion
Ref Expression
mapsnconst  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . . 5  |-  B  e. 
_V
2 mapsncnv.x . . . . . 6  |-  X  e. 
_V
32snex 4171 . . . . 5  |-  { X }  e.  _V
41, 3elmap 6655 . . . 4  |-  ( F  e.  ( B  ^m  { X } )  <->  F : { X } --> B )
52fsn2 5670 . . . . 5  |-  ( F : { X } --> B 
<->  ( ( F `  X )  e.  B  /\  F  =  { <. X ,  ( F `
 X ) >. } ) )
65simprbi 273 . . . 4  |-  ( F : { X } --> B  ->  F  =  { <. X ,  ( F `
 X ) >. } )
74, 6sylbi 120 . . 3  |-  ( F  e.  ( B  ^m  { X } )  ->  F  =  { <. X , 
( F `  X
) >. } )
8 mapsncnv.s . . . 4  |-  S  =  { X }
98oveq2i 5864 . . 3  |-  ( B  ^m  S )  =  ( B  ^m  { X } )
107, 9eleq2s 2265 . 2  |-  ( F  e.  ( B  ^m  S )  ->  F  =  { <. X ,  ( F `  X )
>. } )
118xpeq1i 4631 . . 3  |-  ( S  X.  { ( F `
 X ) } )  =  ( { X }  X.  {
( F `  X
) } )
12 fvexg 5515 . . . . 5  |-  ( ( F  e.  ( B  ^m  S )  /\  X  e.  _V )  ->  ( F `  X
)  e.  _V )
132, 12mpan2 423 . . . 4  |-  ( F  e.  ( B  ^m  S )  ->  ( F `  X )  e.  _V )
14 xpsng 5671 . . . 4  |-  ( ( X  e.  _V  /\  ( F `  X )  e.  _V )  -> 
( { X }  X.  { ( F `  X ) } )  =  { <. X , 
( F `  X
) >. } )
152, 13, 14sylancr 412 . . 3  |-  ( F  e.  ( B  ^m  S )  ->  ( { X }  X.  {
( F `  X
) } )  =  { <. X ,  ( F `  X )
>. } )
1611, 15eqtr2id 2216 . 2  |-  ( F  e.  ( B  ^m  S )  ->  { <. X ,  ( F `  X ) >. }  =  ( S  X.  { ( F `  X ) } ) )
1710, 16eqtrd 2203 1  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730   {csn 3583   <.cop 3586    X. cxp 4609   -->wf 5194   ` cfv 5198  (class class class)co 5853    ^m cmap 6626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628
This theorem is referenced by:  mapsncnv  6673
  Copyright terms: Public domain W3C validator