ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnconst Unicode version

Theorem mapsnconst 6762
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
Assertion
Ref Expression
mapsnconst  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . . 5  |-  B  e. 
_V
2 mapsncnv.x . . . . . 6  |-  X  e. 
_V
32snex 4219 . . . . 5  |-  { X }  e.  _V
41, 3elmap 6745 . . . 4  |-  ( F  e.  ( B  ^m  { X } )  <->  F : { X } --> B )
52fsn2 5739 . . . . 5  |-  ( F : { X } --> B 
<->  ( ( F `  X )  e.  B  /\  F  =  { <. X ,  ( F `
 X ) >. } ) )
65simprbi 275 . . . 4  |-  ( F : { X } --> B  ->  F  =  { <. X ,  ( F `
 X ) >. } )
74, 6sylbi 121 . . 3  |-  ( F  e.  ( B  ^m  { X } )  ->  F  =  { <. X , 
( F `  X
) >. } )
8 mapsncnv.s . . . 4  |-  S  =  { X }
98oveq2i 5936 . . 3  |-  ( B  ^m  S )  =  ( B  ^m  { X } )
107, 9eleq2s 2291 . 2  |-  ( F  e.  ( B  ^m  S )  ->  F  =  { <. X ,  ( F `  X )
>. } )
118xpeq1i 4684 . . 3  |-  ( S  X.  { ( F `
 X ) } )  =  ( { X }  X.  {
( F `  X
) } )
12 fvexg 5580 . . . . 5  |-  ( ( F  e.  ( B  ^m  S )  /\  X  e.  _V )  ->  ( F `  X
)  e.  _V )
132, 12mpan2 425 . . . 4  |-  ( F  e.  ( B  ^m  S )  ->  ( F `  X )  e.  _V )
14 xpsng 5740 . . . 4  |-  ( ( X  e.  _V  /\  ( F `  X )  e.  _V )  -> 
( { X }  X.  { ( F `  X ) } )  =  { <. X , 
( F `  X
) >. } )
152, 13, 14sylancr 414 . . 3  |-  ( F  e.  ( B  ^m  S )  ->  ( { X }  X.  {
( F `  X
) } )  =  { <. X ,  ( F `  X )
>. } )
1611, 15eqtr2id 2242 . 2  |-  ( F  e.  ( B  ^m  S )  ->  { <. X ,  ( F `  X ) >. }  =  ( S  X.  { ( F `  X ) } ) )
1710, 16eqtrd 2229 1  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3623   <.cop 3626    X. cxp 4662   -->wf 5255   ` cfv 5259  (class class class)co 5925    ^m cmap 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718
This theorem is referenced by:  mapsncnv  6763
  Copyright terms: Public domain W3C validator