ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnconst Unicode version

Theorem mapsnconst 6750
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
Assertion
Ref Expression
mapsnconst  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . . 5  |-  B  e. 
_V
2 mapsncnv.x . . . . . 6  |-  X  e. 
_V
32snex 4215 . . . . 5  |-  { X }  e.  _V
41, 3elmap 6733 . . . 4  |-  ( F  e.  ( B  ^m  { X } )  <->  F : { X } --> B )
52fsn2 5733 . . . . 5  |-  ( F : { X } --> B 
<->  ( ( F `  X )  e.  B  /\  F  =  { <. X ,  ( F `
 X ) >. } ) )
65simprbi 275 . . . 4  |-  ( F : { X } --> B  ->  F  =  { <. X ,  ( F `
 X ) >. } )
74, 6sylbi 121 . . 3  |-  ( F  e.  ( B  ^m  { X } )  ->  F  =  { <. X , 
( F `  X
) >. } )
8 mapsncnv.s . . . 4  |-  S  =  { X }
98oveq2i 5930 . . 3  |-  ( B  ^m  S )  =  ( B  ^m  { X } )
107, 9eleq2s 2288 . 2  |-  ( F  e.  ( B  ^m  S )  ->  F  =  { <. X ,  ( F `  X )
>. } )
118xpeq1i 4680 . . 3  |-  ( S  X.  { ( F `
 X ) } )  =  ( { X }  X.  {
( F `  X
) } )
12 fvexg 5574 . . . . 5  |-  ( ( F  e.  ( B  ^m  S )  /\  X  e.  _V )  ->  ( F `  X
)  e.  _V )
132, 12mpan2 425 . . . 4  |-  ( F  e.  ( B  ^m  S )  ->  ( F `  X )  e.  _V )
14 xpsng 5734 . . . 4  |-  ( ( X  e.  _V  /\  ( F `  X )  e.  _V )  -> 
( { X }  X.  { ( F `  X ) } )  =  { <. X , 
( F `  X
) >. } )
152, 13, 14sylancr 414 . . 3  |-  ( F  e.  ( B  ^m  S )  ->  ( { X }  X.  {
( F `  X
) } )  =  { <. X ,  ( F `  X )
>. } )
1611, 15eqtr2id 2239 . 2  |-  ( F  e.  ( B  ^m  S )  ->  { <. X ,  ( F `  X ) >. }  =  ( S  X.  { ( F `  X ) } ) )
1710, 16eqtrd 2226 1  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3619   <.cop 3622    X. cxp 4658   -->wf 5251   ` cfv 5255  (class class class)co 5919    ^m cmap 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-map 6706
This theorem is referenced by:  mapsncnv  6751
  Copyright terms: Public domain W3C validator