ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpindi Unicode version

Theorem xpindi 4539
Description: Distributive law for cross product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
xpindi  |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B
)  i^i  ( A  X.  C ) )

Proof of Theorem xpindi
StepHypRef Expression
1 inxp 4538 . 2  |-  ( ( A  X.  B )  i^i  ( A  X.  C ) )  =  ( ( A  i^i  A )  X.  ( B  i^i  C ) )
2 inidm 3198 . . 3  |-  ( A  i^i  A )  =  A
32xpeq1i 4431 . 2  |-  ( ( A  i^i  A )  X.  ( B  i^i  C ) )  =  ( A  X.  ( B  i^i  C ) )
41, 3eqtr2i 2106 1  |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B
)  i^i  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1287    i^i cin 2987    X. cxp 4409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-opab 3875  df-xp 4417  df-rel 4418
This theorem is referenced by:  xpriindim  4542
  Copyright terms: Public domain W3C validator