ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpindi Unicode version

Theorem xpindi 4780
Description: Distributive law for cross product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
xpindi  |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B
)  i^i  ( A  X.  C ) )

Proof of Theorem xpindi
StepHypRef Expression
1 inxp 4779 . 2  |-  ( ( A  X.  B )  i^i  ( A  X.  C ) )  =  ( ( A  i^i  A )  X.  ( B  i^i  C ) )
2 inidm 3359 . . 3  |-  ( A  i^i  A )  =  A
32xpeq1i 4664 . 2  |-  ( ( A  i^i  A )  X.  ( B  i^i  C ) )  =  ( A  X.  ( B  i^i  C ) )
41, 3eqtr2i 2211 1  |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B
)  i^i  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    i^i cin 3143    X. cxp 4642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-opab 4080  df-xp 4650  df-rel 4651
This theorem is referenced by:  xpriindim  4783  djuassen  7245  xpdjuen  7246
  Copyright terms: Public domain W3C validator